GKMCET
Lecture Plan
Subject code \& Subject Name: CS2351 \& AI
Unit Number: 1V

UNIT-IV: UNCERTAINTY

Uncertainty

[To act rationally under uncertainty we must be able to evaluate how likely certain things are.
I With FOL a fact F is only useful if it is known to be true or false.
[But we need to be able to evaluate how likely it is that F is true.
[By weighing likelihoods of events (probabilities) we can develop mechanisms for acting rationally under uncertainty.

Dental Diagnosis example.

[In FOL we might formulate
[P. symptom(P, toothache) \rightarrow
disease(p,cavity) disease(p,gumDisease)
disease (p,foodStuck) L
[When do we stop?
[Cannot list all possible causes.
[We also want to rank the possibilities. We don't want to start drilling for a cavity before checking for more likely causes first.

Axioms Of Probability

[Given a set U (universe), a probability function is a function defined over the subsets of U that maps each subset to the real numbers and that satisfies the Axioms of Probability
$1 . \operatorname{Pr}(\mathrm{U})=1$
2. $\operatorname{Pr}(\mathrm{A}) \in[0,1]$
3. $\operatorname{Pr}(\mathrm{A} \cup \mathrm{B})=\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B})-\operatorname{Pr}(\mathrm{A} \cap \mathrm{B})$

GKMCET
Lecture Plan
Subject code \& Subject Name: CS2351 \& AI

Note if $A \cap B=\{ \}$ then $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$

BASIC PROBABILTY NOTATION

1 Unconditional or prior probabilities

2 Conditional or posterior probabilities

SEMANTICS OF BAYESIAN NETWORK

1 Representation of joint probability distribution

2 Conditional independence relation in Bayesian network INFERENCE IN BAYESIAN NETWORK

1 Tell

2 Ask

3 Kinds of inferences

4 Use of Bayesian network

TEMPORAL MODEL

1 Monitoring or filtering

2 Prediction

GKMCET
Lecture Plan
Subject code \& Subject Name: CS2351 \& AI
Unit Number: 1V

Bayes' Theorem

Many of the methods used for dealing with uncertainty in expert systems are based on Bayes' Theorem.

Notation:

P(A) Probability of event A
P(A B) Probability of events A and B occurring together
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ Conditional probability of event A given that event B has occurred

If A and B are independent, then $P(A \mid B)=P(A)$.
Expert systems usually deal with events that are not independent, e.g. a disease and its symptoms are not independent.

Theorem

$\mathrm{P}(\mathrm{A} B)=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) * \mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) * \mathrm{P}(\mathrm{A})$ therefore $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) * \mathrm{P}(\mathrm{A}) / \mathrm{P}(\mathrm{B}$
Uses of Bayes' Theorem
In doing an expert task, such as medical diagnosis, the goal is to determine identifications (diseases) given observations (symptoms). Bayes' Theorem provides such a relationship.
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) * \mathrm{P}(\mathrm{A}) / \mathrm{P}(\mathrm{B})$
Suppose: A $=$ Patient has measles, $B=$ has a rash Then $: \mathrm{P}($ measles $/ \mathrm{rash})=\mathrm{P}($ rash $/$ measles $) * \mathrm{P}($ measles $) / \mathrm{P}($ rash $)$

The desired diagnostic relationship on the left can be calculated based on the known statistical quantities on the right.

Joint Probability Distribution
Given a set of random variables $\mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{n}}$, an atomic event is an assignment of a particular

Unit Number: 1V
Subject code \& Subject Name: CS2351 \& AI
value to each X_{i}.
The joint probability distribution is a table that assigns a probability to each atomic event. Any question of conditional probability can be answered from the joint.[Example from Russell \& Norvig.]

Toothache \neg Toothache
Cavity $0.04 \quad 0.06$
\neg Cavity $0.01 \quad 0.89$

Problems:

- The size of the table is combinatoric: the product of the number of possibilities for each random variable.
- The time to answer a question from the table will also be combinatoric.
- Lack of evidence: we may not have statistics for some table entries, even though those entries are not impossible.

Chain Rule

We can compute probabilities using a chain rule as follows:
$\mathrm{P}(\mathrm{A}$ \& and B \&and C$)=\mathrm{P}(\mathrm{A} \mid \mathrm{B}$ \& and C$) * \mathrm{P}(\mathrm{B} \mid \mathrm{C}) * \mathrm{P}(\mathrm{C})$
If some conditions C_{1} \&and \ldots \&and C_{n} are independent of other conditions U , we will have:
$\mathrm{P}\left(\mathrm{A} \mid \mathrm{C}_{1}\right.$ \&and \ldots \&and C_{n} \&and U$)=\mathrm{P}\left(\mathrm{A} \mid \mathrm{C}_{1}\right.$ \& and \ldots \&and $\left.\mathrm{C}_{\mathrm{n}}\right)$
This allows a conditional probability to be computed more easily from smaller tables using the chain rule.

GKMCET
Lecture Plan
Subject code \& Subject Name: CS2351 \& AI
Unit Number: 1V

Bayesian Networks

Bayesian networks, also called belief networks or Bayesian belief networks, express relationships among variables by directed acyclic graphs with probability tables stored at the nodes.[Example from Russell \& Norvig.]

1 A burglary can set the alarm off
2 An earthquake can set the alarm off
3 The alarm can cause Mary to call
4 The alarm can cause John to call

Computing with Bayesian Networks

If a Bayesian network is well structured as a poly-tree (at most one path between any two nodes), then probabilities can be computed relatively efficiently.

One kind of algorithm, due to Judea Pearl, uses a message-passing style in which nodes of the network compute probabilities and send them to nodes they are connected to.

Several software packages exist for computing with belief networks.
A Hidden Markov Model (HMM) tagger chooses the tag for each word that maximizes: [Jurafsky, op. cit.] P(word |tag) * P(tag | previous n tags)

For a bigram tagger, this is approximated as:
$t_{i}=\operatorname{argmax}_{j} P\left(w_{i} \mid t_{j}\right) P\left(t_{j} \mid t_{i-1}\right)$
In practice, trigram taggers are most often used, and a search is made for the best set of tags for the whole sentence; accuracy is about 96%.

GKMCET
Lecture Plan

