
AVC Engg college , Dept of cse Page 1

AVC COLLEGE OF ENGINEERING

MANNAMPANDAL, MAYILADUTHURAI- 609 305

 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 Name of the Faculty : Mr. K. Tamilselvan, Asst Proff

COURSE MATERIAL

GE6151 COMPUTER PROGRAMMING

BE – FIRST YEAR / FIRST SEMESTER

AVC Engg college , Dept of cse Page 2

SYLLABUS

GE6151 COMPUTER PROGRAMMING L T P C
 3 0 0 3

UNIT I INTRODUCTION 8

Generation and Classification of Computers- Basic Organization of a Computer –Number System –

Binary – Decimal – Conversion – Problems. Need for logical analysis and thinking – Algorithm –

Pseudo code – Flow Chart.

UNIT II C PROGRAMMING BASICS 10

Problem formulation – Problem Solving - Introduction to ‘ C’ programming –fundamentals – structureof

a ‘C’ program – compilation and linking processes – Constants, Variables – Data Types –Expressions

using operators in ‘C’ – Managing Input and Output operations – Decision Making andBranching –

Looping statements – solving simple scientific and statistical problems.

UNIT III ARRAYS AND STRINGS 9

Arrays – Initialization – Declaration – One dimensional and Two dimensional arrays. String-

Stringoperations – String Arrays. Simple programs- sorting- searching – matrix operations.

UNIT IV FUNCTIONS AND POINTERS 9

Function – definition of function – Declaration of function – Pass by value – Pass by reference –

Recursion – Pointers - Definition – Initialization – Pointers arithmetic – Pointers and arrays- Example-

Problems.

UNIT V STRUCTURES AND UNIONS 9

Introduction – need for structure data type – structure definition – Structure declaration – Structure-

within a structure - Union - Programs using structures and Unions – Storage classes, Pre-processor

directives.

TOTAL: 45 PERIODS

TEXTBOOKS: 1. Anita Goel and Ajay Mittal, “Computer Fundamentals and Programming in C”,

Dorling Kindersley(India) Pvt. Ltd., Pearson Education in South Asia, 2011.

AVC Engg college , Dept of cse Page 3

2. Pradip Dey, Manas Ghosh, “Fundamentals of Computing and Programming in C”, First

Edition,Oxford University Press, 2009

3. Yashavant P. Kanetkar. “ Let Us C”, BPB Publications, 2011.

REFERENCES:

1. Byron S Gottfried, “Programming with C”, Schaum’s Outlines, Second Edition, Tata McGraw-

Hill,2006.

2. Dromey R.G., “How to Solve it by Computer”, Pearson Education, Fourth Reprint, 2007.

3. Kernighan,B.W and Ritchie,D.M, “The C Programming language”, Second Edition,

PearsonEducation, 2006.

UNIT I INTRODUCTION

Generation and Classification of Computers- Basic Organization of a Computer –Number System –

Binary – Decimal – Conversion – Problems. Need for logical analysis and thinking – Algorithm –

Pseudo code – Flow Chart.

GENERATIONS OF COMPUTERS

The Zeroth Generation

The term Zeroth generation is used to refer to the period of development of computing, which
predated the commercial production and sale of computer equipment. The period might be dated
as extending from the mid-1800s. In particular, this period witnessed the emergence of the first
electronics digital computers on the ABC, since it was the first to fully implement the idea of the
stored program and serial execution of instructions. The development of EDVAC set the stage
for the evolution of commercial computing and operating system software. The hardware
component technology of this period was electronic vacuum tubes. The actual operation of these
early computers took place without be benefit of an operating system. Early programs were
written in machine language and each contained code for initiating operation of the computer
itself. This system was clearly inefficient and depended on the varying competencies of the
individual programmer as operators.

The First Generation, 1951-1956

The first generation marked the beginning of commercial computing. The first generation was

AVC Engg college , Dept of cse Page 4

characterized by high-speed vacuum tube as the active component technology. Operation
continued without the benefit of an operating system for a time. The mode was called "closed
shop" and was characterized by the appearance of hired operators who would select the job to be
run, initial program load the system, run the user’s program, and then select another job, and so
forth. Programs began to be written in higher level, procedure-oriented languages, and thus the
operator’s routine expanded. The operator now selected a job, ran the translation program to
assemble or compile the source program, and combined the translated object program along with
any existing library programs that the program might need for input to the linking program,
loaded and ran the composite linked program, and then handled the next job in a similar fashion.
Application programs were run one at a time, and were translated with absolute computer
addresses. There was no provision for moving a program to different location in storage for any
reason. Similarly, a program bound to specific devices could not be run at all if any of these
devices were busy or broken.

At the same time, the development of programming languages was moving away from the basic
machine languages; first to assembly language, and later to procedure oriented languages, the
most significant being the development of FORTRAN

The Second Generation, 1956-1964

The second generation of computer hardware was most notably characterized by transistors
replacing vacuum tubes as the hardware component technology. In addition, some very
important changes in hardware and software architectures occurred during this period. For the
most part, computer systems remained card and tape-oriented systems. Significant use of random
access devices, that is, disks, did not appear until towards the end of the second generation.
Program processing was, for the most part, provided by large centralized computers operated
under mono-programmed batch processing operating systems.

The most significant innovations addressed the problem of excessive central processor delay due
to waiting for input/output operations. Recall that programs were executed by processing the
machine instructions in a strictly sequential order. As a result, the CPU, with its high speed
electronic component, was often forced to wait for completion of I/O operations which involved
mechanical devices (card readers and tape drives) that were order of magnitude slower.

These hardware developments led to enhancements of the operating system. I/O and data channel
communication and control became functions of the operating system, both to relieve the
application programmer from the difficult details of I/O programming and to protect the integrity
of the system to provide improved service to users by segmenting jobs and running shorter jobs
first (during "prime time") and relegating longer jobs to lower priority or night time runs. System
libraries became more widely available and more comprehensive as new utilities and application
software components were available to programmers.

The second generation was a period of intense operating system development. Also it was the
period for sequential batch processing. Researchers began to experiment with multiprogramming
and multiprocessing.

The Third Generation, 1964-1979

The third generation officially began in April 1964 with IBM’s announcement of its System/360

AVC Engg college , Dept of cse Page 5

family of computers. Hardware technology began to use integrated circuits (ICs) which yielded
significant advantages in both speed and economy. Operating System development continued
with the introduction and widespread adoption of multiprogramming. This marked first by the
appearance of more sophisticated I/O buffering in the form of spooling operating systems. These
systems worked by introducing two new systems programs, a system reader to move input jobs
from cards to disk, and a system writer to move job output from disk to printer, tape, or cards.
The spooling operating system in fact had multiprogramming since more than one program was
resident in main storage at the same time. Later this basic idea of multiprogramming was
extended to include more than one active user program in memory at time. To accommodate this
extension, both the scheduler and the dispatcher were enhanced. In addition, memory
management became more sophisticated in order to assure that the program code for each job or
at least that part of the code being executed was resident in main storage. Users shared not only
the system’ hardware but also its software resources and file system disk space.

The third generation was an exciting time, indeed, for the development of both computer
hardware and the accompanying operating system. During this period, the topic of operating
systems became, in reality, a major element of the discipline of computing.

The Fourth Generation, 1979 - Present

The fourth generation is characterized by the appearance of the personal computer and the
workstation. Miniaturization of electronic circuits and components continued and Large Scale
Integration (LSI), the component technology of the third generation, was replaced by Very Large
Scale Integration (VLSI), which characterizes the fourth generation. However, improvements in
hardware miniaturization and technology have evolved so fast that we now have inexpensive
workstation-class computer capable of supporting multiprogramming and time-sharing. Hence
the operating systems that supports today’s personal computers and workstations look much like
those which were available for the minicomputers of the third generation. Examples are
Microsoft’s DOS for IBM-compatible personal computers and UNIX for workstation. However,
many of these desktop computers are now connected as networked or distributed systems.
Computers in a networked system each have their operating system augmented with
communication capabilities that enable users to remotely log into any system on the network and
transfer information among machines that are connected to the network. The machines that make
up distributed system operate as a virtual single processor system from the user’s point of view; a
central operating system controls and makes transparent the location in the system of the
particular processor or processors and file systems that are handling any given program.

CLASSIFICATION OF COMPUTERS

There are four classifications of digital computer systems: super-computer, mainframe
computer, minicomputer, and microcomputer.

Super-computers are very fast and powerful machines. Their internal architecture enables them
to run at the speed of tens of MIPS (Million Instructions per Second). Super-computers are very
expensive and for this reason are generally not used for CAD applications. Examples of super-
computers are: Cray and CDC Cyber 205.

AVC Engg college , Dept of cse Page 6

Mainframe computers are built for general computing, directly serving the needs of business
and engineering. Although these computing systems are a step below super-computers, they are
still very fast and will process information at about 10 MIPS. Mainframe computing systems are
located in a centralized computing center with 20-100+ workstations. This type of computer is
still very expensive and is not readily found in architectural/interior design offices.

Minicomputers were developed in the 1960's resulting from advances in microchip technology.
Smaller and less expensive than mainframe computers, minicomputers run at several MIPS and
can support 5-20 users. CAD usage throughout the 1960's used minicomputers due to their low
cost and high performance. Examples of minicomputers are: DEC PDP, VAX 11.

Microcomputers were invented in the 1970's and were generally used for home computing and
dedicated data processing workstations. Advances in technology have improved microcomputer
capabilities, resulting in the explosive growth of personal computers in industry. In the 1980's
many medium and small design firms were finally introduced to CAD as a direct result of the
low cost and availability of microcomputers. Examples are: IBM, Compaq, Dell, Gateway, and
Apple Macintosh.

The average computer user today uses a microcomputer. These types of computers include PC's,
laptops, notebooks, and hand-held computers such as Palm Pilots.

Larger computers fall into a mini-or mainframe category. A mini-computer is 3-25 times faster
than a micro. It is physically larger and has a greater storage capacity.

A mainframe is a larger type of computer and is typically 10-100 times faster than the micro.
These computers require a controlled environment both for temperature and humidity. Both the
mini and mainframe computers will support more workstations than will a micro. They also cost
a great deal more than the micro running into several hundred thousand dollars for the
mainframes.

Processors
The term processor is a sub-system of a data processing system which processes received
information after it has been encoded into data by the input sub-system. These data are then
processed by the processing sub-system before being sent to the output sub-system where they
are decoded back into information. However, in common parlance processor is usually referred
to the microprocessor, the brains of the modern day computers.

There are two main types of processors: CISC and RISC.

CISC: A Complex Instruction Set Computer (CISC) is a microprocessor Instruction Set
Architecture (ISA) in which each instruction can indicate several low-level operations, such as a
load from memory, an arithmetic operation, and a memory store, all in a single instruction. The
term was coined in contrast to Reduced Instruction Set Computer (RISC).

Examples of CISC processors are the VAX, PDP-11, Motorola 68000 family and the Intel
x86/Pentium CPUs.

RISC: Reduced Instruction Set Computing (RISC), is a microprocessor CPU design
philosophy that favors a smaller and simpler set of instructions that all take about the same

AVC Engg college , Dept of cse Page 7

amount of time to execute. Most types of modern microprocessors are RISCs, for instance ARM,
DEC Alpha, SPARC, MIPS, and PowerPC.

The microprocessor contains the CPU which is made up of three components--the control unit
supervises all that is going on in the computer, the arithmetic/logic unit which performs the math
and comparison operation, and temporary memory. Because of the progress in developing better
microprocessors, computers are continually evolving into faster and better units.

Notebooks
A laptop computer (also known as notebook computer) is a small mobile personal computer,
usually weighing around from 1 to 3 kilograms (2 to 7 pounds). Notebooks smaller than an A4
sheet of paper and weighing around 1 kg are sometimes called sub-notebooks and those
weighing around 5 kg a desk note (desktop/notebook). Computers larger than PDAs but smaller
than notebooks are also sometimes called "palmtops". Laptops usually run on batteries.

Notebook Processor:

A notebook processor is a CPU optimized for notebook computers. All computing devices
require a CPU. One of the main characteristics differentiating notebook processors from other
CPUs is low-power consumption.

The notebook processor is becoming an increasing important market segment in the
semiconductor industry. Notebook computers are an increasingly popular format of the broader
category of mobile computers. The objective of a notebook computer is to provide the
performance and functionality of a desktop computer in a portable size and weight. Wireless
networking and low power consumption are primary consideration in the choice of a notebook
processor.

Integrated Components

Unlike a desktop computer, a notebook has most of the components built-in or integrated into the
computer. For desktop systems, determining which computer to buy is generally not based on
what type of keyboard or mouse that is available. If you don't like the keyboard or mouse, you
can always purchase something else. However, in the case of a notebook computer, the size of
the keyboard or type of pointing device may be something that you need to consider unless you
intend to use a regular mouse or full-sized keyboard. There are some notebooks that have a
keyboard that expands when the notebook is opened which is a nice feature if you find the
normal keyboard to be too small. Pointing devices vary from a touch pad to a stick within the
keyboard to a roller or track-ball. Most notebooks have the video, sound, and speakers integrated
into the computer and some notebooks even have a digital camera built-in which is very handy
for video conferencing.

BOOTING:

In computing, booting is a bootstrapping process that starts operating systems when the user
turns on a computer system. A boot sequence is the set of operations the computer performs
when it is switched on which load an operating system.

Everything that happens between the times the computer switched on and it is ready to accept
commands/input from the user is known as booting.

AVC Engg college , Dept of cse Page 8

The process of reading disk blocks from the starting of the system disk (which contains the
Operating System) and executing the code within the bootstrap. This will read further
information off the disk to bring the whole operating system online.

Device drivers are contained within the bootstrap code that support all the locally attached
peripheral devices and if the computer is connected to a network, the operating system will
transfer to the Network Operating system for the "client" to log onto a server

The Process of loading a computer memory with instructions needed for the computer to operate.
The process and functions that a computer goes through when it first starts up, ending in the
proper and complete loading of the Operating System. The sequence of computer operations
from power-up until the system is ready for use

COLD BOOTING:

The cold booting is the situation, when all the computer peripherals are OFF and we start the
computer by switching ON the power.

WARM BOOTING:

The warm booting is the situation, when we restart the computer by pressing the RESET button
and pressing CTRL+ ALT + DEL keys together.

Graphic User Interface (GUI)
A program interface that takes advantage of the computer's graphics capabilities to make the
program easier to use. Well-designed graphical user interfaces can free the user from learning
complex command languages. On the other hand, many users find that they work more
effectively with a command-driven interface, especially if they already know the command
language.

AVC Engg college , Dept of cse Page 9

BASIC COMPUTER ORGANIZATION:

Introduction to CPU

 CPU (Central Processing Unit)
 The Arithmetic / Logic Unit (ALU)
 The Control Unit
 Memory
 Main
 External
 Input / Output Devices
 The System Bus

CPU Operation
The fundamental operation of most CPUs
- To execute a sequence of stored instructions called a program.
 The program is represented by a series of numbers that are kept in some kind of computer

memory.
 There are four steps that nearly all CPUs use in their operation: fetch, decode, execute,

and write back.
 Fetch:

o Retrieving an instruction from program memory.
o The location in program memory is determined by a program counter (PC)
o After an instruction is fetched, the PC is incremented by the length of the

instruction word in terms of memory units.

AVC Engg college , Dept of cse Page 10

 Decode :
o The instruction is broken up into parts that have significance to other portions of

the CPU.
o The way in which the numerical instruction value is interpreted is defined by the

CPU's instruction set architecture (ISA).
o Opcode, indicates which operation to perform.
o The remaining parts of the number usually provide information required for that

instruction, such as operands for an addition operation.
o Such operands may be given as a constant value or as a place to locate a value: a

register or a memory address, as determined by some addressing mode.
 Execute :

o During this step, various portions of the CPU are connected so they can perform
the desired operation.

o If, for instance, an addition operation was requested, an arithmetic logic unit
(ALU) will be connected to a set of inputs and a set of outputs.

o The inputs provide the numbers to be added, and the outputs will contain the final
sum.

o If the addition operation produces a result too large for the CPU to handle, an
arithmetic overflow flag in a flags register may also be set.

 Write back :
o Simply "writes back" the results of the execute step to some form of memory.
o Very often the results are written to some internal CPU register for quick access

by subsequent instructions.
o In other cases results may be written to slower, but cheaper and larger, main
memory.
o Some types of instructions manipulate the program counter rather than directly

produce result data.

Input Devices
Anything that feeds the data into the computer. This data can be in alpha-numeric form which
needs to be keyed-in or in its very basic natural form i.e. hear, smell, touch, see; taste & the sixth
sense …feel?

Typical input devices are:
1. Keyboard 2. Mouse
3. Joystick 4. Digitizing Tablet
5. Touch Sensitive Screen 6. Light Pen

7. Space Mouse 8.
Digital Stills
Camera

9. Magnetic Ink Character 10.
Optical Mark
Reader

Recognition (MICR) (OMR)
11. Image Scanner 12. Bar Codes
13. Magnetic Reader 14. Smart Cards
15. Voice Data Entry 16. Sound Capture
17. Video Capture

The Keyboard is the standard data input and operator control device for a computer. It consists

AVC Engg college , Dept of cse Page 11

of the standard QWERTY layout with a numeric keypad and additional function keys for control
purposes.

The Mouse is a popular input device. You move it across the desk and its movement is shown
on the screen by a marker known as a 'cursor'. You will need to click the buttons at the top of the
mouse to select an option.

Track ball looks like a mouse, as the roller is on the top with selection buttons on the side. It is
also a pointing device used to move the cursor and works like a mouse. For moving the cursor in
a particular direction, the user spins the ball in that direction. It is sometimes considered better
than a mouse, because it requires little arm movement and less desktop space. It is generally
used with Portable computers.

Magnetic Ink Character Recognition (MICR) is used to recognize the magnetically charged
characters, mainly found on bank cheques. The magnetically charged characters are written by
special ink called magnetic ink. MICR device reads the patterns of these characters and
compares them with special patterns stored in memory. Using MICR device, a large volume of
cheques can be processed in a day. MICR is widely used by the banking industry for the
processing of cheques.

The joystick is a rotary lever. Similar to an aircraft's control stick, it enables you to move within
the screen's environment, and is widely used in the computer games industry.

A Digitising Tablet is a pointing device that facilitates the accurate input of drawings and
designs. A drawing can be placed directly on the tablet, and the user traces outlines or inputs
coordinate positions with a hand-held stylus.

A Touch Sensitive Screen is a pointing device that enables the user to interact with the
computer by touching the screen. There are three types of Touch Screens: pressure-sensitive,
capacitive surface and light beam.

A Light Pen is a pointing device shaped like a pen and is connected to a VDU. The tip of the
light pen contains a light-sensitive element which, when placed against the screen, detects the
light from the screen enabling the computer to identify the location of the pen on the screen.
Light pens have the advantage of 'drawing' directly onto the screen, but this can become
uncomfortable, and they are not as accurate as digitising tablets.

The Space mouse is different from a normal mouse as it has an X axis, a Y axis and a Z axis. It
can be used for developing and moving around 3-D environments.

Digital Stills Cameras capture an image which is stored in memory within the camera. When
the memory is full it can be erased and further images captured. The digital images can then be
downloaded from the camera to a computer where they can be displayed, manipulated or printed.

The Optical Mark Reader (OMR) can read information in the form of numbers or letters and
put it into the computer. The marks have to be precisely located as in multiple choice test
papers.

Scanners allow information such as a photo or text to be input into a computer. Scanners are
usually either A4 size (flatbed), or hand-held to scan a much smaller area. If text is to be

AVC Engg college , Dept of cse Page 12

scanned, you would use an Optical Character Recognition (OCR) program to recognise the
printed text and then convert it to a digital text file that can be accessed using a computer.

A Bar Code is a pattern printed in lines of differing thickness. The system gives fast and error-
free entry of information into the computer. You might have seen bar codes on goods in
supermarkets, in libraries and on magazines. Bar codes provide a quick method of recording the
sale of items.

Card Reader This input device reads a magnetic strip on a card. Handy for security reasons, it
provides quick identification of the card's owner. This method is used to run bank cash points or
to provide quick identification of people entering buildings.

Smart Card This input device stores data in a microprocessor embedded in the card.
This allows information, which can be updated, to be stored on the card. This method is
used in store cards which accumulate points for the purchaser, and to store phone numbers
for cellular phones.

Output Devices

Output devices display information in a way that you can you can understand. The most
common output device is a monitor. It looks a lot a like a TV and houses the computer screen.
The monitor allows you to 'see' what you and the computer are doing together.

Brief of Output Device
Output devices are pieces of equipment that are used to get information or any other response out
from computer. These devices display information that has been held or generated within a
computer. Output devices display information in a way that you can understand. The most
common output device is a monitor.

Types of Output Device
Printing: Plotter, Printer
Sound : Speakers
Visual : Monitor

A Printer is another common part of a computer system. It takes what you see on the computer
screen and prints it on paper. There are two types of printers; Impact Printers and Non-Impact
Printers.

Speakers are output devices that allow you to hear sound from your computer. Computer
speakers are just like stereo speakers. There are usually two of them and they come in various
sizes.

Memory or Primary Storage

AVC Engg college , Dept of cse Page 13

Purpose of Storage

The fundamental components of a general-purpose computer are arithmetic and logic unit,
control circuitry, storage space, and input/output devices. If storage was removed, the device we
had would be a simple calculator instead of a computer. The ability to store instructions that
form a computer program, and the information that the instructions manipulate is what makes
stored program architecture computers versatile.

 Primary storage, or internal memory, is computer memory that is accessible to the central
processing unit of a computer without the use of computer's input/output channels

 Primary storage, also known as main storage or memory, is the main area in a computer in
which data is stored for quick access by the computer's processor.

Primary Storage

Primary storage is directly connected to the central processing unit of the computer. It must be
present for the CPU to function correctly, just as in a biological analogy the lungs must be
present (for oxygen storage) for the heart to function (to pump and oxygenate the blood). As
shown in the diagram, primary storage typically consists of three kinds of storage:

Processors Register
It is the internal to the central processing unit. Registers contain information that the arithmetic
and logic unit needs to carry out the current instruction. They are technically the fastest of all
forms of computer storage.

Main memory

It contains the programs that are currently being run and the data the programs are operating on. The
arithmetic and logic unit can very quickly transfer information between a processor register and locations
in main storage, also known as a "memory addresses". In modern computers, electronic solid-state
random access memory is used for main storage, and is directly connected to the CPU via a "memory
bus" and a "data bus".

Cache memory

It is a special type of internal memory used by many central processing units to increase their
performance or "throughput". Some of the information in the main memory is duplicated in the cache
memory, which is slightly slower but of much greater capacity than the processor registers, and faster but
much smaller than main memory.

Memory

Memory is often used as a shorter synonym for Random Access Memory (RAM). This kind of memory
is located on one or more microchips that are physically close to the microprocessor in your computer.
Most desktop and notebook computers sold today include at least 512 megabytes of RAM (which is really
the minimum to be able to install an operating system). They are upgradeable, so you can add more when
your computer runs really slowly.

AVC Engg college , Dept of cse Page 14

The more RAM you have, the less frequently the computer has to access instructions and data from the
more slowly accessed hard disk form of storage. Memory should be distinguished from storage, or the
physical medium that holds the much larger amounts of data that won't fit into RAM and may not be
immediately needed there.

Storage devices include hard disks, floppy disks, CDROMs, and tape backup systems. The terms
auxiliary storage, auxiliary memory, and secondary memory have also been used for this kind of data
repository.

RAM is temporary memory and is erased when you turn off your computer, so remember to save your
work to a permanent form of storage space like those mentioned above before exiting programs or turning
off your computer.

TYPES OF RAM:

There are two types of RAM used in PCs - Dynamic and Static RAM.

Dynamic RAM (DRAM): The information stored in Dynamic RAM has to be refreshed after every few
milliseconds otherwise it will get erased. DRAM has higher storage capacity and is cheaper than Static
RAM.

Static RAM (SRAM): The information stored in Static RAM need not be refreshed, but it remains stable
as long as power supply is provided. SRAM is costlier but has higher speed than DRAM.

Additional kinds of integrated and quickly accessible memory are Read Only Memory (ROM),
Programmable ROM (PROM), and Erasable Programmable ROM (EPROM). These are used to keep
special programs and data, such as the BIOS, that need to be in your computer all the time. ROM is
"built-in" computer memory containing data that normally can only be read, not written to (hence the
name read only).

ROM contains the programming that allows your computer to be "booted up" or regenerated each time
you turn it on. Unlike a computer's random access memory (RAM), the data in ROM is not lost when the
computer power is turned off. The ROM is sustained by a small long life battery in your computer called
the CMOS battery. If you ever do the hardware setup procedure with your computer, you effectively will
be writing to ROM. It is non volatile, but not suited to storage of large quantities of data because it is
expensive to produce. Typically, ROM must also be completely erased before it can be rewritten,

PROM (Programmable Read Only Memory)

A variation of the ROM chip is programmable read only memory. PROM can be programmed to record
information using a facility known as PROM-programmer. However once the chip has been programmed
the recorded information cannot be changed, i.e. the PROM becomes a ROM and the information can
only be read.

EPROM (Erasable Programmable Read Only Memory)

As the name suggests the Erasable Programmable Read Only Memory, information can be erased and the
chip programmed a new to record different information using a special PROM-Programmer. When
EPROM is in use information can only be read and the information remains on the chip until it is erased.

AVC Engg college , Dept of cse Page 15

Storage Devices

The purpose of storage in a computer is to hold data or information and get that data to the CPU as
quickly as possible when it is needed. Computers use disks for storage: hard disks that are located inside
the computer, and floppy or compact disks that are used externally.

• Computers Method of storing data & information for long term basis i.e. even after PC is switched
off.

• It is non – volatile

• Can be easily removed and moved & attached to some other device

• Memory capacity can be extended to a greater extent
• Cheaper than primary memory

Storage Involves Two Processes
a) Writing data b) Reading data

Floppy Disks

The floppy disk drive (FDD) was invented at IBM by Alan Shugart in 1967. The first floppy drives used
an 8-inch disk (later called a "diskette" as it got smaller), which evolved into the 5.25-inch disk that was
used on the first IBM Personal Computer in August 1981. The 5.25-inch disk held 360 kilobytes
compared to the 1.44 megabyte capacity of today's 3.5-inch diskette.

The 5.25-inch disks were dubbed "floppy" because the diskette packaging was a very flexible plastic
envelope, unlike the rigid case used to hold today's 3.5-inch diskettes.

By the mid-1980s, the improved designs of the read/write heads, along with improvements in the
magnetic recording media, led to the less-flexible, 3.5-inch, 1.44-megabyte (MB) capacity FDD in use
today. For a few years, computers had both FDD sizes (3.5-inch and 5.25-inch). But by the mid-1990s,
the 5.25-inch version had fallen out of popularity, partly because the diskette's recording surface could
easily become contaminated by fingerprints through the open access area.

When you look at a floppy disk, you'll see a plastic case that measures 3 1/2 by 5 inches. Inside that case
is a very thin piece of plastic that is coated with microscopic iron particles. This disk is much like the tape
inside a video or audio cassette. Basically, a floppy disk drive reads and writes data to a small, circular
piece of metal-coated plastic similar to audio cassette tape.

At one end of it is a small metal cover with a rectangular hole in it. That cover can be moved aside to
show the flexible disk inside. But never touch the inner disk - you could damage the data that is stored
on it. On one side of the floppy disk is a place for a label. On the other side is a silver circle with two
holes in it. When the disk is inserted into the disk drive, the drive hooks into those holes to spin the
circle. This causes the disk inside to spin at about 300 rpm! At the same time, the silver metal cover on
the end is pushed aside so that the head in the disk drive can read and write to the disk.

Floppy disks are the smallest type of storage, holding only 1.44MB.

AVC Engg college , Dept of cse Page 16

3.5-inch Diskettes (Floppy Disks) features:

• Spin rate: app. 300 revolutions per minute (rpm)

• High density (HD) disks more common today than older, double density (DD) disks
• Storage Capacity of HD disks is 1.44 MB

Floppy Disk Drive Terminology

 Floppy disk - Also called diskette. The common size is 3.5 inches.
 Floppy disk drive - The electromechanical device that reads and writes floppy disks.
 Track - Concentric ring of data on a side of a disk.
 Sector - A subset of a track, similar to wedge or a slice of pie.

It consists of a read/write head and a motor rotating the disk at a high speed of about 300 rotations per
minute. It can be fitted inside the cabinet of the computer and from outside, the slit where the disk is to be
inserted, is visible. When the disk drive is closed after inserting the floppy inside, the monitor catches the
disk through the Central of Disk hub, and then it starts rotating.

There are two read/write heads depending upon the floppy being one sided or two sided. The head
consists of a read/write coil wound on a ring of magnetic material. During write operation, when the
current passes in one direction, through the coil, the disk surface touching the head is magnetized in one
direction. For reading the data, the procedure is reverse. I.e. the magnetized spots on the disk touching the
read/write head induce the electronic pulses, which are sent to CPU.

The major parts of a FDD include:

 Read/Write Heads: Located on both sides of a diskette, they move together on the same
assembly. The heads are not directly opposite each other in an effort to prevent interaction
between write operations on each of the two media surfaces. The same head is used for reading
and writing, while a second, wider head is used for erasing a track just prior to it being written.
This allows the data to be written on a wider "clean slate," without interfering with the analog
data on an adjacent track.

 Drive Motor: A very small spindle motor engages the metal hub at the center of the diskette,
spinning it at either 300 or 360 rotations per minute (RPM).

 Stepper Motor: This motor makes a precise number of stepped revolutions to move the
read/write head assembly to the proper track position. The read/write head assembly is fastened to
the stepper motor shaft.

 Mechanical Frame: A system of levers that opens the little protective window on the diskette to
allow the read/write heads to touch the dual-sided diskette media. An external button allows the
diskette to be ejected, at which point the spring-loaded protective window on the diskette closes.

 Circuit Board: Contains all of the electronics to handle the data read from or written to the
diskette. It also controls the stepper-motor control circuits used to move the read/write heads to
each track, as well as the movement of the read/write heads toward the diskette surface.

Electronic optics check for the presence of an opening in the lower corner of a 3.5-inch diskette (or a notch

in the side of a 5.25-inch diskette) to see if the user wants to prevent data from being written on it.

Hard Disks
Your computer uses two types of memory: primary memory which is stored on chips located on the
motherboard, and secondary memory that is stored in the hard drive. Primary memory holds all of the
essential memory that tells your computer how to be a computer. Secondary memory holds the

AVC Engg college , Dept of cse Page 17

information that you store in the computer.

Inside the hard disk drive case you will find circular disks that are made from polished steel. On the disks,
there are many tracks or cylinders. Within the hard drive, an electronic reading/writing device called the
head passes back and forth over the cylinders, reading information from the disk or writing information to
it. Hard drives spin at 3600 or more rpm (Revolutions Per Minute) - that means that in one minute, the
hard drive spins around over 7200 times!

Optical Storage

•
•
•
•
•

Compact Disk Read-Only Memory (CD-ROM)

CD-Recordable (CD-R)/CD-Rewritable (CD-RW)

Digital Video Disk Read-Only Memory (DVD-ROM)

DVD Recordable (DVD-R/DVD Rewritable (DVD-RW)

Photo CD

Optical Storage Devices Data is stored on a reflective surface so it can be read by a beam of laser
light. Two Kinds of Optical Storage Devices

•
•

CD-ROM (compact disk read-only memory)

DVD-ROM (digital video disk read-only memory)

Compact Disks

Instead of electromagnetism, CDs use pits (microscopic indentations) and lands (flat surfaces) to store
information much the same way floppies and hard disks use magnetic and non-magnetic storage. Inside
the CD-Rom is a laser that reflects light off of the surface of the disk to an electric eye. The pattern of
reflected light (pit) and no reflected light (land) creates a code that represents data.

CDs usually store about 650MB. This is quite a bit more than the 1.44MB that a floppy disk stores. A
DVD or Digital Video Disk holds even more information than a CD, because the DVD can store
information on two levels, in smaller pits or sometimes on both sides.

Recordable Optical Technologies

•
•

CD-Recordable (CD-R)

CD-Rewritable (CD-RW)

•
•
•

PhotoCD

DVD-Recordable (DVD-R)

DVD-RAM

AVC Engg college , Dept of cse Page 18

CD ROM - Compact Disc Read Only Memory.

Unlike magnetic storage device which store data on multiple concentric tracks, all CD formats store data on one
physical track, which spirals continuously from the center to the outer edge of the recording area. Data resides on
the thin aluminum substrate immediately beneath the label.

The data on the CD is recorded as a series of microscopic pits and lands physically embossed on an aluminum
substrate. Optical drives use a low power laser to read data from those discs without physical contact between the
head and the disc which contributes to the high reliability and permanence of storage device.

To write the data on a CD a higher power laser are used to record the data on a CD. It creates the pits and land on
aluminum substrate. The data is stored permanently on the disc. These types of discs are called as WORM (Write
Once Read Many). Data written to CD cannot subsequently be deleted or overwritten which can be classified as
advantage or disadvantage depending upon the requirement of the user. However if the CD is partially filled then
the more data can be added to it later on till it is full. CDs are usually cheap and cost effective in terms of storage
capacity and transferring the data.

The CD’s were further developed where the data could be deleted and re written. These types of CDs are called as
CD Rewritable. These types of discs can be used by deleting the data and making the space for new data. These
CD’s can be written and rewritten at least 1000 times.

CD ROM Drive

CD ROM drives are so well standardized and have become so ubiquitous that many treat them as commodity
items. Although CD ROM drives differ in reliability, which standards they support and numerous other respects,
there are two important performance measures.

 Data transfer rate
 Average access

Data transfer rate: Data transfer rate means how fast the drive delivers sequential data to the interface. This rate is
determined by drive rotation speed, and is rated by a number followed by ‘X’. All the other things equal, a 32X
drive delivers data twice the speed of a 16X drive. Fast data transfer rate is most important when the drive is used
to transfer the large file or many sequential smaller files. For example: Gaming video.

CD ROM drive transfers the data at some integer multiple of this basic 150 KB/s 1X rate. Rather than designating
drives by actual KB/s output drive manufacturers use a multiple of the standard 1X rate. For example: a 12X drive
transfer data at (12*150KB/s) 1800 KB/s and so on.

The data on a CD is saved on tracks, which spirals from the center of the CD to outer edge. The portions of the
tracks towards center are shorter than those towards the edge. Moving the data under the head at a constant rate
requires spinning the disc faster as the head moves from the center where there is less data per revolution to the
edge where there is more data. Hence the rotation rate of the disc changes as it progresses from inner to outer
portions of the disc.

CD Writers
CD recordable and CD rewritable drives are collectively called as CD writers or CD burners. They are
essentially CD ROM drives with one difference. They have a more powerful laser that, in addition to
reading discs, can record data to special CD media.

Pen Drives / Flash Drives
 Pen Drives / Flash Drives are flash memory storage devices.

AVC Engg college , Dept of cse Page 19

 They are faster, portable and have a capability of storing large data.
 It consists of a small printed circuit board with a LED encased in a robust plastic
 The male type connector is used to connect to the host PC
 They are also used a MP3 players

Printers
Printers are hardware devices that allow you to create a hard copy of a file. Today a printer is a necessary
requirement for any home user and business. Allowing individuals to save their work in the format of
paper instead of electronically.

Types of Printers
 Impact printers

o In case of Impact printer an inked ribbon exists between the print head and paper
,the head striking the ribbon prints the character.

 Non Impact Printers
o Non Impact printers use techniques other than the mechanical method of head striking

the ribbon
Impact printers
Impact printers are basically divided into 2 types
 Serial/Character printers

o Dot matrix printers
 Daisy wheel printers

o Line Printers

Non-Impact Printers
Non Impact Printers are divided into 3 categories
 Thermal printers
 Ink jet printers
 Laser printers

Classification
Printers are classified by the following characteristics:

Quality of type: The output produced by printers is said to be either letter quality (as good as a
typewriter), near letter quality, or draft quality. Only daisy-wheel, ink-jet, and laser printers produce
letter-quality type. Some dot-matrix printers claim letter-quality print, but if you look closely, you can see
the difference.

Speed: Measured in characters per second (cps) or pages per minute (ppm), the speed of printers varies
widely. Daisy-wheel printers tend to be the slowest, printing about 30 cps. Line printers are fastest (up to
3,000 lines per minute). Dot-matrix printers can print up to 500 cps, and laser printers range from about 4
to 20 text pages per minute.

Impact or non-impact: Impact printers include all printers that work by striking an ink ribbon. Daisy-
wheel, dot-matrix, and line printers are impact printers. Non-impact printers include laser printers and
ink-jet printers. The important difference between impact and non-impact printers is that impact printers
are much noisier.

AVC Engg college , Dept of cse Page 20

Graphics: Some printers (daisy-wheel and line printers) can print only text. Other printers can print both
text and graphics.

Fonts: Some printers, notably dot-matrix printers, are limited to one or a few fonts. In contrast, laser and
ink-jet printers are capable of printing an almost unlimited variety of fonts. Daisy-wheel printers can also
print different fonts, but you need to change the daisy wheel, making it difficult to mix fonts in the same
document.

Dot Matrix Printers

A dot matrix printer or impact matrix printer refers to a type of computer printer with a print head that
runs back and forth on the page and prints by impact, striking an ink-soaked cloth ribbon against the
paper, much like a typewriter. Unlike a typewriter or daisy wheel printer, letters are drawn out of a dot
matrix, and thus, varied fonts and arbitrary graphics can be produced. Because the printing involves
mechanical pressure, these printers can create carbon copies and carbonless copies. The standard of
print obtained is poor. These printers are cheap to run and relatively fast.

The moving portion of the printer is called the print head, and prints one line of text at a time. Most dot
matrix printers have a single vertical line of dot-making equipment on their print heads; others have a few
interleaved rows in order to improve dot density. The print head consists of 9 or 24 pins each can move
freely within the tube; more the number of pins better are the quality of output. Dot Matrix Printer
Characters are formed from a matrix of dots.

The speed is usually 30 - 550 characters per second (cps). These types of printers can print graphs also.
They can only print text and graphics, with limited color performance. Impact printers have one of the
lowest printing costs per page. These machines can be highly durable, but eventually wear out. Ink
invades the guide plate of the print head, causing grit to adhere to it; this grit slowly causes the channels
in the guide plate to wear from circles into ovals or slots, providing less and less accurate guidance to the
printing wires. After about a million characters, even with tungsten blocks and titanium pawls, the
printing becomes too unclear to read.

Daisy Wheel Printer

A daisy wheel printer is a type of computer printer that produces high-quality type, and is often referred
to as a letter-quality printer (this in contrast to high-quality dot-matrix printers, capable of near-letter-
quality, or NLQ, output). There were also, and still are daisy wheel typewriters, based on the same
principle. The DWP is slower the speed range is in 30 to 80 CPS.

The system used a small wheel with each letter printed on it in raised metal or plastic. The printer turns
the wheel to line up the proper letter under a single pawl which then strikes the back of the letter and
drives it into the paper. In many respects the daisy wheel is similar to a standard typewriter in the way it
forms its letters on the page, differing only in the details of the mechanism (daisy wheel vs typebars or the
type ball used on IBMs electric typewriters).

Daisy wheel printers were fairly common in the 1980s, but were always less popular than dot matrix
printers (ballistic wire printers) due to the latter's ability to print graphics and different fonts. With the
introduction of high quality laser printers and inkjet printers in the later 1980s daisy wheel systems
quickly disappeared but for the small remaining typewriter market.

AVC Engg college , Dept of cse Page 21

Line Printer

The line printer is a form of high speed impact printer in which a line of type is printed at a time.
The wheels spin at high speed and paper and an inked ribbon are stepped (moved) past the print position.
As the desired character for each column passes the print position, a hammer strikes the paper and ribbon
causing the desired character to be recorded on the continuous paper. The speed is 300 to 2500 lines per
minute (LPM). This technology is still in use in a number of applications. It is usually both faster and less
expensive (in total ownership) than laser printers. In printing box labels, medium volume accounting and
other large business applications, line printers remain in use

Line printers, as the name implies, print an entire line of text at a time. Two principle designs existed. In
drum printers, a drum carries the entire character set of the printer repeated in each column that is to be
printed. In chain printers (also known as train printers), the character set is arranged multiple times
around a chain that travels horizontally pas the print line. In either case, to print a line, precisely timed
hammers strike against the back of the paper at the exact moment that the correct character to be printed
is passing in front of the paper. The paper presses forward against a ribbon which then presses against the
character form and the impression of the character form is printed onto the paper.

These printers were the fastest of all impact printers and were used for bulk printing in large computer
centers. They were virtually never used with personal computers and have now been partly replaced by
high-speed laser printers.

Thermal Printers

Direct thermal printers create an image by selectively heating coated paper when the paper passes over
the thermal print head. The coating turns black in the areas where it is heated, creating the image. More
recently, two-color direct thermal printers have been produced, which allow printing of both red (or
another color) and black by heating to different temperatures.

Thermal Printer Characters are formed by heated elements being placed in contact with special heat
sensitive paper forming darkened dots when the elements reach a critical temperature. A fax machine uses
a thermal printer. Thermal printer paper tends to darken over time due to exposure to sunlight and heat.
The standard of print produced is poor. Thermal printers are widely used in battery powered equipment
such as portable calculators.

Direct thermal printers are increasingly replacing the dot matrix printer for printing cash register receipts,
both because of the higher print speed and substantially quieter operation. In addition, direct thermal
printing offers the advantage of having only one consumable - the paper itself. Thus, the technology is
well-suited to unattended applications like gas pumps, information kiosks, and the like.

Until about 2000, most fax machines used direct thermal printing, though, now, only the cheapest models
use it, the rest having switched to either thermal wax transfer, laser, or ink jet printing to allow plain-
paper printouts. Historically, direct thermal paper has suffered from such limitations as sensitivity to heat,
abrasion (the coating can be fragile), friction (which can cause heat, thus darkening the paper), light
(causing it to fade), and water. However, more modern thermal coating formulations have resulted in
exceptional image stability, with text remaining legible for an estimated 50+ years.

Ink-Jet Printers

AVC Engg college , Dept of cse Page 22

Inkjet printers spray very small, precise amounts (usually a few picolitres) of ink onto the media. They are
the most common type of computer printer for the general consumer due to their low cost, high quality of
output, capability of printing in vivid color, and ease of use. It is the most common printer used with
home computers and it can print in either black and white or color.

Compared to earlier consumer-oriented printers, ink jets have a number of advantages. They are
quieter in operation than impact dot matrix or daisywheel printers. They can print finer, smoother details
through higher print head resolution, and many ink jets with photorealistic-quality color printing are
widely available. For color applications including photo printing, ink jet methods are dominant.

Laser Printers
A laser printer is a common type of computer printer that produces high quality printing, and is able to
produce both text and graphics. The process is very similar to the type of dry process photocopier first
produced by Xerox.

Laser Printers use a laser beam and dry powdered ink to produce a fine dot matrix pattern. This method of
printing can generate about 4 pages of A4 paper per minute. The standard of print is very good and laser
printers can also produce very good quality printed graphic images too.

SCANNERS:

Technology today is rising to it’s heights. For time saving and to have paperless offices we have a need of
electronic version of invoice, Material ordering forms, Contract ordering data etc…for filing and database
management. Even to automate the process of logging sales data into Excel, a scanner can help one with
all of these tasks and more.

A scanner is an optical device that captures images, objects, and documents into a digital format. The
image is read as thousands of individual dots, or pixels. It can convert a picture into digital bits of
information which are then reassembled by the computer with the help of scanning software. The file of
the image can then be enlarged or reduced, stored in a database, or transferred into a word processing or
spreadsheet program.

Some of the key considerations for choosing the right scanner for your needs are given below.

a) How you intend to use the scanner?
b) Which type of scanner fits the exact usage?
c) Does one require a Black & White or a Colour quality output?
d) What is the Price and the Software bundles?

Depending upon the usage and the importance of the business if one would like to have quality
photographs or other images, than colour quality will be an important characteristic. With both a black
and white and a color quality output the bit depth, resolution and dynamic range are essential to selecting
the right scanner for ones need.

Scanner Types:
Scanners create a digital reproduction of an image or document and come in a variety of shapes and sizes
designed to perform different types of tasks. There are three types of office scanners usually seen in the
market and the functions they serve are as follows:

a) Flatbed
The flatbed scanner consists of its own base with a flat piece of glass and cover just as is found on
most copiers. The scanning component of flatbeds runs over the length of the image in order to
gather data. Flatbeds are useful when a user needs to scan more than single page documents.

AVC Engg college , Dept of cse Page 23

Pages from a book, for example, can easily be scanned without having to copy each page
individually first.

Scanning objects is also done by flatbeds. By placing a white sheet of paper over a bouquet of
flowers a scanner can reproduce what appears to be a stock photo onscreen.

Flatbeds have large footprint and hence take up a lot of desk thus if space is a concern one may
go for an alternative.

b) Sheetfed
Sheetfed scanners are only used if one wants to scan for anything other than sheets of paper. The
scanning component of a sheetfed is stationary while the document being scanned passes over it's
'eyes' similar to a fax machine. It is so thin just a couple of inches deep, such that it can easily fit
between keyboards and monitor.
Sheetfeds usually work best in conjunction with an automatic document feeder for large projects.
Pictures and other documents which are smaller than a full page can also be scanned using a
sheetfed scanner. They have been known to bend pictures and reproduce less than quality images.

c) Slide

There is a need for accurate reproduce of very small images. For such application the resolution
required is very sharp and slide types of scanner create a totally different scanner market. Slides
are usually inserted into a tray, much like a CD tray on ones computer, and scanned internally.
Most slide scanners can only scan slides, though some newer models can also handle negative
strips.

Scanner Uses:
A scanner can do far more than simply scan a photograph, and many of its uses could go a long way to

helping a small business. Below are indicated some of the applications for the scanner in a business
environment.

1) Graphics
Graphic images are an important part of many businesses specially in marketing and sales functions.
Scanners, like digital cameras, enable users to convert photographs, slides, and three-dimensional objects
into files that can be pasted into a brochure, inserted into a presentation or posted on the Internet. Using
accompanying software, these images can be edited, cropped, or manipulated to fit space and size
requirements.

2) Data-Entry
Scanners automatically convert the data into digital files using OCR (Optical Character Recognition)
software; this would save time and money which one would pay to someone to manually enter the reams
of data into the computer. In conjunction with the software, a scanner reads each page and transfers the
text to any number of programs. A form letter can be saved to a word processing program, sales figures to
a spreadsheet, even a brochure to web-editing software.

3) Digital-Files
One observes that there are numerous papers filed in three-ring binders or different kinds of manual filing
in the offices for records. The process of the manual paper flow can be avoided by using scanners of
Digital type. Such scanners can help to create electronic filing cabinets for everything from invoices to
expense reports. Forms can be reproduced online, and searchable databases can provide relevant

AVC Engg college , Dept of cse Page 24

information in seconds.

Pointer:
A symbol that appears on the display screen and that you move to select objects and commands. Usually,
the pointer appears as a small angled arrow. Text -processing applications, however, use an I-beam
pointer that is shaped like a capital I.
Pointing device:
A device, such as a mouse or trackball that enables you to select objects on the display screen.
Icons:
Small pictures that represent commands, files, or windows. By moving the pointer to the icon and
pressing a mouse button, you can execute a command or convert the icon into a window. You can also
move the icons around the display screen as if they were real objects on your desk.

Desktop:
The area on the display screen where icons are grouped is often referred to as the desktop because the
icons are intended to represent real objects on a real desktop.
Windows:
You can divide the screen into different areas. In each window, you can run a different program or display
a different file. You can move windows around the display screen, and change their shape and size at will.
Menus:
Most graphical user interfaces let you execute commands by selecting a choice from a menu.

In addition to their visual components, graphical user interfaces also make it easier to move data from one
application to another. A true GUI includes standard formats for representing text and graphics. Because
the formats are well-defined, different programs that run under a common GUI can share data. This
makes it possible, for example, to copy a graph created by a spreadsheet program into a document created
by a word processor.

Character User Interface/Text User Interface (CUI/TUI)
Short for Character User Interface or Command-line User Interface, CUI is another name for a command
line. Early user interfaces were CUI. That is they could only display the characters defined in the ASCII
set. Examples of this type of interface are the command line interfaces provided with DOS 3.3 and early
implementations of UNIX and VMS.

This was limiting, but it was the only choice primarily because of 2 hardware constraints. Early CPUs did
not have the processing power to manage a GUI. Also, the video controllers and monitors were unable to
display the high resolution necessary to implement a GUI.

FUNCTIONS OF CPU:

Process Management

The CPU executes a large number of programs. While its main concern is the execution of user programs,
the CPU is also needed for other system activities. These activities are called processes. A process is a
program in execution. Typically, a batch job is a process. A time-shared user program is a process. A
system task, such as spooling, is also a process. For now, a process may be considered as a job or a time-
shared program, but the concept is actually more general.

In general, a process will need certain resources such as CPU time, memory, files, I/O devices, etc., to
accomplish its task. These resources are given to the process when it is created. In addition to the various
physical and logical resources that a process obtains when it is created, some initialization data (input)
may be passed along.

We emphasize that a program by itself is not a process; a program is a passive entity. It is known that two

AVC Engg college , Dept of cse Page 25

processes may be associated with the same program; they are nevertheless considered two separate
execution sequences.

The operating system is responsible for the following activities in connection with processes managed.
 The creation and deletion of both user and system processes
 The suspension and resumption of processes.
 The provision of mechanisms for process synchronization
 The provision of mechanisms for deadlock handling.

Memory Management

Memory is central to the operation of a modern computer system. Memory is a large array of words or
bytes, each with its own address. Interaction is achieved through a sequence of reads or writes of specific
memory address. The CPU fetches from and stores in memory. In order for a program to be executed it
must be mapped to absolute addresses and loaded in to memory.

In order to improve both the utilization of CPU and the speed of the computer's response to its users,
several processes must be kept in memory.

The operating system is responsible for the following activities in connection with memory management.
 Keep track of which parts of memory are currently being used and by whom.
 Decide which processes are to be loaded into memory when memory space becomes available.
 Allocate and de-allocate memory space as needed.

Secondary Storage Management

The main purpose of a computer system is to execute programs. These programs, together with the data
they access, must be in main memory during execution. Since the main memory is too small to
permanently accommodate all data and program, the computer system must provide secondary storage to
backup main memory. Most modem computer systems use disks as the primary on-line storage of
information, of both programs and data.

Most programs, like compilers, assemblers, sort routines, editors, formatters, and so on, are stored on the
disk until loaded into memory, and then use the disk as both the source and destination of their
processing. Hence the proper management of disk storage is of central importance to a computer system.

There are few alternatives. Magnetic tape systems are generally too slow. In addition, they are limited to
sequential access. Thus tapes are more suited for storing infrequently used files, where speed is not a
primary concern.

The operating system is responsible for the following activities in connection with disk management
 Free space management
 Storage allocation
 Disk scheduling.

Input Output System

One of the purposes of an operating system is to hide the peculiarities of specific hardware devices from
the user. For example, in UNIX, the peculiarities of Input/Output devices are hidden from the bulk of the
operating system itself by the INPUT/OUTPUT system. The Input/Output system consists of:
 A buffer caching system
 A general device driver code
 Drivers for specific hardware devices.

AVC Engg college , Dept of cse Page 26

Only the device driver knows the peculiarities of a specific device.

File Management

File management is one of the most visible services of an operating system. Computers can store
information in several different physical forms; magnetic tape, disk, and drum are the most common
forms. Each of these devices has it own characteristics and physical organization. For convenient use of
the computer system, the operating system provides a uniform logical view of information storage. The
operating system abstracts from the physical properties of its storage devices to define a logical storage
unit, the file. Files are mapped, by the operating system, onto physical devices.

A file is a collection of related information defined by its creator. Commonly, files represent programs
(both source and object forms) and data. Data files may be numeric, alphabetic or alphanumeric. Files
may be free-form, such as text files, or may be rigidly formatted. In general files are a sequence of bits,
bytes, lines or records whose meaning is defined by its creator and user. It is a very general concept.
The operating system implements the abstract concept of the file by managing mass storage device, such
as tapes and disks. Also files are normally organized into directories to ease their use. Finally, when
multiple users have access to files, it may be desirable to control by whom and in what ways files may be
accessed.

The operating system is responsible for the following activities in connection with file management:
 The creation and deletion of files
 The creation and deletion of directory
 The support of primitives for manipulating files and directories
 The mapping of files onto disk storage.
 Backup of files on stable (non volatile) storage.

Protection System

The various processes in an operating system must be protected from each other’s activities. For that
purpose, various mechanisms which can be used to ensure that the files, memory segment, CPU and other
resources can be operated on only by those processes that have gained proper authorization from the
operating system.

Protection refers to a mechanism for controlling the access of programs, processes, or users to the
resources defined by a computer controls to be imposed, together with some means of enforcement. An
unprotected resource cannot defend against use (or misuse) by an unauthorized or incompetent user.

Networking

A distributed system is a collection of processors that do not share memory or a clock. Instead, each
processor has its own local memory, and the processors communicate with each other through various
communication lines, such as high speed buses or telephone lines. Distributed systems vary in size and
function. They may involve microprocessors, workstations, minicomputers, and large general purpose
computer systems.

The processors in the system are connected through a communication network, which can be configured
in the number of different ways. The network may be fully or partially connected. The communication
network design must consider routing and connection strategies, and the problems of connection and
security. A distributed system provides the user with access to the various resources the system maintains.
Access to a shared resource allows computation speed-up, data availability, and reliability.

Command Interpreter System

AVC Engg college , Dept of cse Page 27

One of the most important components of an operating system is its command interpreter. The command
interpreter is the primary interface between the user and the rest of the system. Many commands are given
to the operating system by control statements. When a new job is started in a batch system or when a user
logs-in to a time-shared system, a program which reads and interprets control statements is automatically
executed.

NUMBER SYSTEMS

Binary Decimal Octal Hexadecimal

0000 00 0 0

0001 01 1 1

0010 02 2 2

0011 03 3 3

0100 04 4 4

0101 05 5 5

0110 06 6 6

0111 07 7 7

1000 08 10 8

1001 09 11 9

1010 10 12 A

1011 11 13 B

1100 12 14 C

1101 13 15 D

1110 14 16 E

1111 15 17 F

DECIMAL NUMBERS

In the decimal number systems each of the ten digits, 0 through 9, represents a certain quantity. The
position of each digit in a decimal number indicates the magnitude of the quantity represented and can
be assigned a weight. The weights for whole numbers are positive powers of ten that increases from
right to left, beginning with 10º = 1 that is 10³ 10² 10¹ 10º

For fractional numbers, the weights are negative powers of ten that decrease from left to right beginning

with 10¯¹ that is 10² 10¹ 10º. 10¯¹ 10¯² 10¯³
The value of a decimal number is the sum of digits after each digit has been multiplied by its weights as
in following examples

Express the decimal number 87 as a sum of the values of each digit.

The digit 8 has a weight of 10 which is 10 as indicated by its position. The digit 7 has a weight of 1
which is 10º as indicated by its position.

AVC Engg college , Dept of cse Page 28

87 = (8 x 10
1)

+ (7 x 10
0
)

Express the decimal number 725.45 as a sum of the values of each digit.

725. 45 = (7 x 10²) + (2 x 10¹) + (5 x 10º) + (4 x 10¯¹) + (5 x 10¯²) = 700 + 20 + 5 + 0.4 + 0.05

BINARY NUMBERS

The binary system is less complicated than the decimal system because it has only two digits, it is a
base-two system. The two binary digits (bits) are 1 and 0. The position of a 1 or 0 in a binary number
indicates its weight, or value within the number, just as the position of a decimal digit determines the
value of that digit. The weights in a binary number are based on power of two as:

….. 2
4

2³ 2
2

2
1

2
0
. 2

-1
2

-2
….

With 4 digits position we can count from zero to 15.In general, with n bits we can count up to a number
equal to - 1. Largest decimal number = - 1.A binary number is a weighted number. The right-most bit is
the least significant bit (LSB) in a binary whole number and has a weight of 2º =1. The weights increase
from right to left by a power of two for each bit. The left-most bit is the most significant bit (MSB); its
weight depends on the size of the binary number.

BINARY-TO-DECIMAL CONVERSION

The decimal value of any binary number can be found by adding the weights of all bits that are 1 and
discarding the weights of all bits that are 0
Example
Let’s convert the binary whole number 101101 to decimal

Weight: 25 24 23 22 2120

X

Binary no: 1 0 1 1 0 1

Value 32 0 8 4 0 1

Sum = 45

HEXADECIMAL NUMBERS

The hexadecimal number system has sixteen digits and is used primarily as a compact way of displaying
or writing binary numbers because it is very easy to convert between binary and hexadecimal. Long
binary numbers are difficult to read and write because it is easy to drop or transpose a bit. Hexadecimal is
widely used in computer and microprocessor applications. The hexadecimal system has a base of sixteen;
it is composed of 16 digits and alphabetic characters. The maximum 3-digits hexadecimal number is FFF
or decimal 4095 and maximum 4-digit hexadecimal number is FFFF or decimal 65.535.

AVC Engg college , Dept of cse Page 29

BINARY-TO-HEXADECIMAL CONVERSION

Simply break the binary number into 4-bit groups, starting at the right-most bit and replace each 4-bit
group with the equivalent hexadecimal symbol as in the following example

Convert the binary number to hexadecimal: 1100101001010111

Solution:

1100 1010 0101 0111

C A 5 7 = CA57

HEXADECIMAL-TO-DECIMAL CONVERSION

One way to find the decimal equivalent of a hexadecimal number is to first convert the hexadecimal
number to binary and then convert from binary to decimal.

Convert the hexadecimal number 1C to decimal:

1 C

0001 1100 = 2
4
+ 2³ + 2² = 16 +8+4 = 28

DECIMAL-TO-HEXADECIMAL CONVERSION

Repeated division of a decimal number by 16 will produce the equivalent hexadecimal number,
formed by the remainders of the divisions. The first remainder produced is the least significant digit
(LSD).
Each successive division by 16 yields a remainder that becomes a digit in the equivalent
hexadecimal number. When a quotient has a fractional part, the fractional part is multiplied by the
divisor to get the remainder.

Convert the decimal number 650 to hexadecimal by repeated division by 16

650 /16 = 40.625 0.625 x 16 = 10 = A (LSD)
40 /16 = 2.5 0.5 x 16 = 8 = 8
2/16 = 0.125 0.125 x 16 = 2 = 2 (MSD)

The hexadecimal number is 28A

AVC Engg college , Dept of cse Page 30

OCTAL NUMBERS

Like the hexadecimal system, the octal system provides a convenient way to express binary
numbers and codes. However, it is used less frequently than hexadecimal in conjunction with
computers and microprocessors to express binary quantities for input and output purposes.

The octal system is composed of eight digits, which are: 0,
1, 2, 3, 4, 5, 6, 7

To count above 7, begin another column and start over: 10, 11, 12, 13, 14, 15, 16, 17, 20, 21 and so
on. Counting in octal is similar to counting in decimal, except that the digits 8 and 9 are not used.

OCTAL-TO-DECIMAL CONVERSION

Since the octal number system has a base of eight, each successive digit position is an increasing
power of eight, beginning in the right-most column with 8º. The evaluation of an octal number in
terms of its decimal equivalent is accomplished by multiplying each digit by its weight and
summing the products.

Let’s convert octal number 2374 in decimal number.

Weight 8³ 8² 8
1

8
0

Octal number 2 3 7 4

2374 = (2 x 8³) + (3 x 8²) + (7 x 8
1
) + (4 x 8º) =1276

DECIMAL-TO-OCTAL CONVERSION

A method of converting a decimal number to an octal number is the repeated division-by-8 method,
which is similar to the method used in the conversion of decimal numbers to binary or to
hexadecimal.
Let’s convert the decimal number 359 to octal. Each successive division by 8 yields a remainder
that becomes a digit in the equivalent octal number. The first remainder generated is the least
significant digit (LSD).

359/8 = 44.875 0.875 x 8 = 7 (LSD)
44 /8 = 5.5 0.5 x 8 = 4
5/8 = 0.625 0.625 x 8 = 5 (MSD)
The number is 547.

OCTAL-TO-BINARY CONVERSION

Because each octal digit can be represented by a 3-bit binary number, it is very easy to convert from
octal to binary.

AVC Engg college , Dept of cse Page 31

Octal/Binary Conversion

Octal Digit 0 1 2 3 4 5 6 7
Binary 000 001 010 011 100 101 110 111

Let’s convert the octal numbers 25 and 140.

Octal Digit 2 5 1 4 0
Binary 010 101 001 100 000

BINARY-TO-OCTAL CONVERSION

Conversion of a binary number to an octal number is the reverse of the octal-to-binary
conversion.

Let’s convert the following binary numbers to octal:
1 1 0 1 0 1 1 0 1 1 1 1 0 0 1
6 5 = 65 5 7 1 = 571

PLANNING THE COMPUTER PROGRAM

The Programming Process - Purpose

Understand the problem

 Read the problem statement
 Question users
 Inputs required
 Outputs required
 Special formulas
 Talk to users

Plan the logic

Visual Design Tools
Input record chart
Printer spacing chart
Hierarchy
chart
Flowchart

Verbal Design Tools
Narrative Description

AVC Engg college , Dept of cse Page 32

Pseudocode

Code the program

 Select an appropriate programming language
 Convert flowchart and/or Pseudocode instructions into programming language

statements

Test the program

 Syntax errors
 Runtime errors
 Logic errors
 Test Data Set

Implement the program

 Buy hardware
 Publish software
 Train users
 Implementation Styles

Crash
Pilot
Phased
Dual

Maintain the program

 Maintenance programmers
 Legacy systems
 Up to 85% of IT department budget

ALGORITHM

Algorithm

 Set of step-by-step instructions that perform a specific task or operation
 “Natural” language NOT programming language

Pseudocode

Set of instructions that mimic programming language instructions

Flowchart

 Visual program design tool
 “Semantic” symbols describe operations to be performed

AVC Engg college , Dept of cse Page 33

FLOWCHARTS

Definitions:

A flowchart is a schematic representation of an algorithm or a stepwise process, showing
the steps as boxes of various kinds, and their order by connecting these with arrows.
Flowcharts are used in designing or documenting a process or program.[

A flow chart, or flow diagram, is a graphical representation of a process or system
that details the sequencing of steps required to create output.

A flowchart is a picture of the separate steps of a process in sequential order.

Types:

High-Level Flowchart

A high-level (also called first-level or top-down) flowchart shows the major steps in a
process. It illustrates a "birds-eye view" of a process, such as the example in the figure
entitled High-Level Flowchart of Prenatal Care. It can also include the intermediate
outputs of each step (the product or service produced), and the sub-steps involved. Such
a flowchart offers a basic picture of the process and identifies the changes taking place
within the process. It is significantly useful for identifying appropriate team members
(those who are involved in the process) and for developing indicators for monitoring the
process because of its focus on intermediate outputs.

Most processes can be adequately portrayed in four or five boxes that represent the major
steps or activities of the process. In fact, it is a good idea to use only a few boxes,
because doing so forces one to consider the most important steps. Other steps are usually
sub-steps of the more important ones.

Detailed Flowchart

The detailed flowchart provides a detailed picture of a process by mapping all of the steps
and activities that occur in the process. This type of flowchart indicates the steps or
activities of a process and includes such things as decision points, waiting periods, tasks
that frequently must be redone (rework), and feedback loops. This type of flowchart is
useful for examining areas of the process in detail and for looking for problems or areas of
inefficiency. For example, the Detailed Flowchart of Patient Registration reveals the
delays that result when the record clerk and clinical officer are not available to assist
clients.

Deployment or Matrix Flowchart

A deployment flowchart maps out the process in terms of who is doing the steps. It is in

AVC Engg college , Dept of cse Page 34

the form of a matrix, showing the various participants and the flow of steps among these
participants. It is chiefly useful in identifying who is providing inputs or services to whom,
as well as areas where different people may be needlessly doing the same task. See the
Deployment of Matrix Flowchart.

ADVANTAGES OF USING FLOWCHARTS

The benefits of flowcharts are as follows:

1. Communication: Flowcharts are better way of communicating the logic of a system
to all concerned.

2. Effective analysis: With the help of flowchart, problem can be analysed in more
effective way.

3. Proper documentation: Program flowcharts serve as a good program
documentation, which is needed for various purposes.

4. Efficient Coding: The flowcharts act as a guide or blueprint during the systems
analysis and program development phase.

5. Proper Debugging: The flowchart helps in debugging process.
6. Efficient Program Maintenance: The maintenance of operating program becomes

easy with the help of flowchart. It helps the programmer to put efforts more
efficiently on that part

Advantages

Logic Flowcharts are easy to understand. They provide a graphical
representation of actions to be taken.

Logic Flowcharts are well suited for representing logic where there is
intermingling among many actions.

Disadvantages

Logic Flowcharts may encourage the use of GoTo statements
leading to software design that is unstructured with logic that is
difficult to decipher.

Without an automated tool, it is time-consuming to maintain Logic
Flowcharts.

Logic Flowcharts may be used during detailed logic design to specify a
module. However, the presence of decision boxes may encourage the
use of GoTo statements, resulting in software that is not structured.
For this reason, Logic Flowcharts may be better used during Structural

AVC Engg college , Dept of cse Page 35

Design

LIMITATIONS OF USING FLOWCHARTS

1. Complex logic: Sometimes, the program logic is quite complicated. In that case,
flowchart becomes complex and clumsy.

2. Alterations and Modifications: If alterations are required the flowchart may
require re-drawing completely.

3. Reproduction: As the flowchart symbols cannot be typed, reproduction of
flowchart becomes a problem.

4. The essentials of what is done can easily be lost in the technical details of how it is
done.

GUIDELINES FOR DRAWING A FLOWCHART

Flowcharts are usually drawn using some standard symbols; however, some special
symbols can also be developed when required. Some standard symbols, which are
frequently required for flowcharting many computer programs.

Start or end of the program

Computational steps or processing function of a program

Input or output operation

Decision making and branching

Connector or joining of two parts of program

Magnetic Tape

AVC Engg college , Dept of cse Page 36

Magnetic Disk

Off-page connector

Flow line

Annotation

Display

Flowchart Symbols

The following are some guidelines in flowcharting:

a. In drawing a proper flowchart, all necessary requirements should be listed out in
logical order.

b. The flowchart should be clear, neat and easy to follow. There should not be any
room for ambiguity in understanding the flowchart.

c. The usual direction of the flow of a procedure or system is from left to right or top
to bottom.

d. Only one flow line should come out from a process symbol.

or

e. Only one flow line should enter a decision symbol, but two or three flow lines, one
for each possible answer, should leave the decision symbol.

AVC Engg college , Dept of cse Page 37

f. Only one flow line is used in conjunction with terminal symbol.

g. Write within standard symbols briefly. As necessary, you can use the annotation
symbol to describe data or computational steps more clearly.

h. If the flowchart becomes complex, it is better to use connector symbols to reduce
the number of flow lines. Avoid the intersection of flow lines if you want to make
it more effective and better way of communication.

i. Ensure that the flowchart has a logical start and finish.
j. It is useful to test the validity of the flowchart by passing through it with a simple

test data.

Examples

Sample flowchart

A flowchart for computing factorial N (N!) Where N! = 1 * 2 * 3 *...* N. This flowchart represents a
"loop and a half" — a situation discussed in introductory programming textbooks that requires either
a duplication of a component (to be both inside and outside the loop) or the component to be put
inside a branch in the loop

AVC Engg college , Dept of cse Page 38

Sample Pseudocode

ALGORITHM Sample
GET Data
WHILE There Is Data

DO Math Operation
GET Data

END WHILE
END ALGORITHM

AVC Engg college , Dept of cse Page 39

UNIT II C PROGRAMMING BASICS 10

Problem formulation – Problem Solving - Introduction to ‘ C’ programming –fundamentals – structureof a

‘C’ program – compilation and linking processes – Constants, Variables – Data Types –Expressions using

operators in ‘C’ – Managing Input and Output operations – Decision Making andBranching – Looping

statements – solving simple scientific and statistical problems

OVERVIEW OF C

As a programming language, C is rather like Pascal or Fortran.. Values are stored in variables. Programs are
structured by defining and calling functions. Program flow is controlled using loops, if statements and function
calls. Input and output can be directed to the terminal or to files. Related data can be stored together in arrays
or structures.

Of the three languages, C allows the most precise control of input and output. C is also rather more terse than
Fortran or Pascal. This can result in short efficient programs, where the programmer has made wise use of C's
range of powerful operators. It also allows the programmer to produce programs which are impossible to
understand. Programmers who are familiar with the use of pointers (or indirect addressing, to use the correct
term) will welcome the ease of use compared with some other languages. Undisciplined use of pointers can lead
to errors which are very hard to trace. This course only deals with the simplest applications of pointers.

A Simple Program

The following program is written in the C programming language.

#include <stdio.h>

main()
{

printf("Programming in C is easy.\n");
}

A NOTE ABOUT C PROGRAMS

In C, lowercase and uppercase characters are very important! All commands in C must be lowercase. The
C programs starting point is identified by the word

main()
This informs the computer as to where the program actually starts. The brackets that follow the keyword
main indicate that there are no arguments supplied to this program (this will be examined later on).

The two braces, { and }, signify the begin and end segments of the program. The purpose of the statment

include <stdio.h>

AVC Engg college , Dept of cse Page 40

is to allow the use of the printf statement to provide program output. Text to be displayed by printf() must
be enclosed in double quotes. The program has only one statement

printf("Programming in C is easy.\n");

printf() is actually a function (procedure) in C that is used for printing variables and text. Where text appears in

double quotes "", it is printed without modification. There are some exceptions however. This has to do with the \

and % characters. These characters are modifier's, and for the present the \ followed by the n character
represents a newline character. Thus the program prints

Programming in C is easy.

and the cursor is set to the beginning of the next line. As we shall see later on, what follows the \ character will
determine what is printed, ie, a tab, clear screen, clear line etc. Another important thing to remember is that all C
statements are terminated by a semi-colon ;

Summary of major points:

 program execution begins at main()
 keywords are written in lower-case
 statements are terminated with a semi-colon
 text strings are enclosed in double quotes
 C is case sensitive, use lower-case and try not to capitalise variable names
 \n means position the cursor on the beginning of the next line
 printf() can be used to display text to the screen
 The curly braces {} define the beginning and end of a program block.

BASIC STRUCTURE OF C PROGRAMS

C programs are essentially constructed in the following manner, as a number of well defined sections.
/* HEADER SECTION */
/* Contains name, author, revision number*/

/* INCLUDE SECTION */
/* contains #include statements */

/* CONSTANTS AND TYPES SECTION */
/* contains types and #defines */

/* GLOBAL VARIABLES SECTION */
/* any global variables declared here */

/* FUNCTIONS SECTION */
/* user defined functions */

/* main() SECTION */

int main()

AVC Engg college , Dept of cse Page 41

{

}

VARIABLE

User defined variables must be declared before they can be used in a program. Variables must begin with a character

or underscore, and may be followed by any combination of characters, underscores, or the digits 0 - 9.

LOCAL AND GLOBAL VARIABLES

Local
These variables only exist inside the specific function that creates them. They are unknown to other functions
and to the main program. As such, they are normally implemented using a stack. Local variables cease to exist
once the function that created them is completed. They are recreated each time a function is executed or called.

Global
These variables can be accessed (ie known) by any function comprising the program. They are implemented
by associating memory locations with variable names. They do not get recreated if the function is recalled.

DEFINING GLOBAL VARIABLES

/* Demonstrating Global variables */

Example:

#include <stdio.h>
int add_numbers(void); /* ANSI function prototype */

/* These are global variables and can be accessed by functions from this point on */
int value1, value2, value3;

int add_numbers(void)
{

auto int result;
result = value1 + value2 +
value3; return result;

}

main()
{

auto int result;

result = add_numbers();
printf("The sum of %d + %d + %d is %d\n",

value1, value2, value3, final_result);
}

The scope of global variables can be restricted by carefully placing the declaration. They are visible from
the declaration until the end of the current source file.

AVC Engg college , Dept of cse Page 42

Example:

#include <stdio.h>
void no_access(void); /* ANSI function prototype */ void
all_access(void);

static int n2; /* n2 is known from this point onwards */

void no_access(void)
{

n1 = 10; /* illegal, n1 not yet known */
n2 = 5; /* valid */

}

static int n1; /* n1 is known from this point onwards */

void all_access(void)
{

n1 = 10; /* valid */
n2 = 3; /* valid */

}

AUTOMATIC AND STATIC VARIABLES

C programs have a number of segments (or areas) where data is located. These segments are typically,
_DATA Static data
_BSS Uninitialized static data, zeroed out before call to main()
_STACK Automatic data, resides on stack frame, thus local to functions
_CONST Constant data, using the ANSI C keyword const

The use of the appropriate keyword allows correct placement of the variable onto the desired data segment.

Example:

/* example program illustrates difference between static and automatic variables */
#include <stdio.h>
void demo(void); /* ANSI function prototypes */

void demo(void)
{

auto int avar = 0; static
int svar = 0;

printf("auto = %d, static = %d\n", avar, svar);
++avar;
++svar;

}

AVC Engg college , Dept of cse Page 43

main()
{

int i
while(i < 3) {

demo();
i++;

}
}

AUTOMATIC AND STATIC VARIABLES

Example:

/* example program illustrates difference between static and automatic variables */
#include <stdio.h>
void demo(void); /* ANSI function prototypes */

void demo(void)
{

auto int avar = 0;
static int svar = 0;

printf("auto = %d, static = %d\n", avar, svar);
++avar;
++svar;

}

main()
{

int i;

while(i < 3) {
demo();
i++;

}
}

Program output

auto = 0, static = 0
auto = 0, static = 1
auto = 0, static = 2

The basic format for declaring variables is

data_type var, var, ... ;
where data_type is one of the four basic types, an integer, character, float, or double type.

AVC Engg college , Dept of cse Page 44

Static variables are created and initialized once, on the first call to the function. Subsequent calls to the function
do not recreate or re-initialize the static variable. When the function terminates, the variable still exists on the
_DATA segment, but cannot be accessed by outside functions.
Automatic variables are the opposite. They are created and re-initialized on each entry to the function. They
disappear (are de-allocated) when the function terminates. They are created on the _STACK segment.

DATA TYPES AND CONSTANTS

The four basic data types are

 INTEGER
These are whole numbers, both positive and negative. Unsigned integers (positive values only)
are supported. In addition, there are short and long integers.

The keyword used to define integers is,

int

An example of an integer value is 32. An example of declaring an integer variable called sum is,

int sum;

sum = 20;

 FLOATING POINT
These are numbers which contain fractional parts, both positive and negative. The keyword used to
define float variables is,

 float

An example of a float value is 34.12. An example of declaring a float variable called money is,

float

money; money =

0.12;

 DOUBLE
These are exponetional numbers, both positive and negative. The keyword used to define double
variables is,

 double

An example of a double value is 3.0E2. An example of declaring a double variable called big is,

double

AVC Engg college , Dept of cse Page 45

big; big =
312E+7;

 CHARACTER
These are single characters. The keyword used to define character variables is,

 char

An example of a character value is the letter A. An example of declaring a character variable called
letter is,

char

letter; letter

= 'A';

Note the assignment of the character A to the variable letter is done by enclosing the value in
single quotes. Remember the golden rule: Single character - Use single quotes.

Sample program illustrating each data type

Example:

#include < stdio.h >

main()
{

int sum;
float
money;
char letter;
double pi;

sum = 10; /* assign integer value */

money = 2.21; /* assign float value */
letter = 'A'; /* assign character value */
pi = 2.01E6; /* assign a double value */

printf("value of sum = %d\n", sum);
printf("value of money = %f\n", money
); printf("value of letter = %c\n", letter
); printf("value of pi = %e\n", pi);

}

Sample program output
value of sum = 10
value of money =
2.210000 value of letter =
A
value of pi = 2.010000e+06

AVC Engg college , Dept of cse Page 46

INITIALISING DATA VARIABLES AT DECLARATION TIME

In C variables may be initialised with a value when they are declared. Consider the following declaration,
which declares an integer variable count which is initialised to 10.

int count = 10;

SIMPLE ASSIGNMENT OF VALUES TO VARIABLES

The = operator is used to assign values to data variables. Consider the following statement, which assigns
the value 32 an integer variable count, and the letter A to the character variable letter

count =

32; letter

= 'A'

Variable Formatters

%d decimal integer
%c character
%s string or character array
%f float
%e double

HEADER FILES

Header files contain definitions of functions and variables which can be incorporated into any C program by
using the pre-processor #include statement. Standard header files are provided with each compiler, and cover a
range of areas, string handling, mathematical, data conversion, printing and reading of variables.

To use any of the standard functions, the appropriate header file should be included. This is done at the
beginning of the C source file. For example, to use the function printf() in a program, the line

#include <stdio.h>
should be at the beginning of the source file, because the definition for printf() is found in the file stdio.h
All header files have the extension .h and generally reside in the /include subdirectory.

#include <stdio.h>
#include
"mydecls.h"

The use of angle brackets <> informs the compiler to search the compilers include directory for the specified
file. The use of the double quotes "" around the filename inform the compiler to search in the current directory
for the specified file.

AVC Engg college , Dept of cse Page 47

OPERATORS AND EXPRESSIONS

An ex pr e s s io n is a sequence of operators and operands that specifies computation of avalue, or that
designates an object or a function, or that generates side effects, or that performs a combination thereof.

ARITHMETIC OPERATORS:

The symbols of the arithmetic operators are:-

Operation Operator Comment Value of Sum before Value of sum after

Multiply * sum = sum * 2; 4 8

Divide / sum = sum / 2; 4 2

Addition + sum = sum + 2; 4 6

Subtraction - sum = sum -2; 4 2

Increment ++ ++sum; 4 5

Decrement -- --sum; 4 3

Modulus % sum = sum % 3; 4 1

Example:

#include <stdio.h>

main()
{

int sum = 50;
float modulus;

modulus = sum % 10;
printf("The %% of %d by 10 is %f\n", sum, modulus);

}

PRE/POST INCREMENT/DECREMENT OPERATORS

PRE means do the operation first followed by any assignment operation. POST means do the operation after any
assignment operation. Consider the following statements

++count; /* PRE Increment, means add one to count */
count++; /* POST Increment, means add one to count */

AVC Engg college , Dept of cse Page 48

Example:

#include <stdio.h>

main()
{

int count = 0, loop;

loop = ++count; /* same as count = count + 1; loop = count; */
printf("loop = %d, count = %d\n", loop, count);

loop = count++; /* same as loop = count; count = count + 1; */
printf("loop = %d, count = %d\n", loop, count);

}

If the operator precedes (is on the left hand side) of the variable, the operation is performed first, so the statement

loop = ++count;

really means increment count first, then assign the new value of count to loop.

THE RELATIONAL OPERATORS

These allow the comparison of two or more variables.

n equal to
!= not equal
< less than
<= less than or equal to
> greater than
>= greater than or equal to

Example:

#include <stdio.h>

main() /* Program introduces the for statement, counts to ten */
{

int count;

for(count = 1; count <= 10; count = count + 1)
printf("%d ", count);

printf("\n");
}

AVC Engg college , Dept of cse Page 49

RELATIONALS (AND, NOT, OR, EOR)

Combining more than one condition
These allow the testing of more than one condition as part of selection statements. The symbols are

LOGICAL AND &&
Logical and requires all conditions to evaluate as TRUE (non-zero).

LOGICAL OR ||

Logical or will be executed if any ONE of the conditions is TRUE (non-zero).

LOGICAL NOT !
logical not negates (changes from TRUE to FALSE, vsvs) a condition.

LOGICAL EOR ^
Logical eor will be excuted if either condition is TRUE, but NOT if they are all true.

Example:

The following program uses an if statement with logical AND to validate the users input to be in the range 1-10.

#include <stdio.h>

main()
{

int number; int
valid = 0;

while(valid == 0) {
printf("Enter a number between 1 and 10 -->");
scanf("%d", &number);
if((number < 1) || (number > 10)){

printf("Number is outside range 1-10. Please re-enter\n");
valid = 0;

}
else

valid = 1;
}
printf("The number is %d\n", number);

}

AVC Engg college , Dept of cse Page 50

Example:

NEGATION

#include <stdio.h>

main()
{

int flag = 0;
if(! flag) {

printf("The flag is not set.\n");

flag = ! flag;

}
printf("The value of flag is %d\n", flag);

}
Example:

Consider where a value is to be inputted from the user, and checked for validity to be within a certain range, lets
say between the integer values 1 and 100.

#include <stdio.h>

main()
{

int number; int
valid = 0;

while(valid == 0) {
printf("Enter a number between 1 and 100");
scanf("%d", &number);
if((number < 1) || (number > 100)) printf("Number

is outside legal range\n");
else

valid = 1;
}
printf("Number is %d\n", number);

}

THE CONDITIONAL EXPRESSION OPERATOR or TERNARY OPERATOR

This conditional expression operator takes THREE operators. The two symbols used to denote this operator are

AVC Engg college , Dept of cse Page 51

the ? and the :. The first operand is placed before the ?, the second operand between the ? and the :, and the third
after the :. The general format is,

condition ? expression1 : expression2

If the result of condition is TRUE (non-zero), expression1 is evaluated and the result of the evaluation becomes
the result of the operation. If the condition is FALSE (zero), then expression2 is evaluated and its result becomes
the result of the operation. An example will help,

s = (x < 0) ? -1 : x * x;

If x is less than zero then s = -1
If x is greater than zero then s = x * x

Example:

#include <stdio.h>

main()
{

int input;

printf("I will tell you if the number is positive, negative or zero!"\n");
printf("please enter your number now--->");
scanf("%d", &input);

(input < 0) ? printf("negative\n") : ((input > 0) ? printf("positive\n") : printf("zero\n"));

}

BIT OPERATIONS

C has the advantage of direct bit manipulation and the operations available are,

Operation Operator Comment Value of Sum before Value of sum after

AND & sum = sum & 2; 4 0

OR | sum = sum | 2; 4 6

Exclusive OR ^ sum = sum ^ 2; 4 6

1's Complement ~ sum = ~sum; 4 -5

Left Shift << sum = sum << 2; 4 16

Right Shift >> sum = sum >> 2; 4 0

Example:

/* Example program illustrating << and >> */

AVC Engg college , Dept of cse Page 52

#include <stdio.h>

main()
{

int n1 = 10, n2 = 20, i = 0;

i = n2 << 4; /* n2 shifted left four times */
printf("%d\n", i);
i = n1 >> 5; /* n1 shifted right five times */
printf("%d\n", i);

}

Example:

/* Example program using EOR operator */
#include <stdio.h>

main()

{
int value1 = 2, value2 = 4;

value1 ^= value2;
value2 ^= value1;
value1 ^= value2;
printf("Value1 = %d, Value2 = %d\n", value1, value2);

}

Example:

/* Example program using AND operator */
#include <stdio.h>

main()
{

int loop;

for(loop = 'A'; loop <= 'Z'; loop++)
printf("Loop = %c, AND 0xdf = %c\n", loop, loop & 0xdf);

}

MANAGING INPUT AND OUTPUT OPERATORS

Printf ():

printf() is actually a function (procedure) in C that is used for printing variables and text. Where text appears in
double quotes "", it is printed without modification. There are some exceptions however. This has to do with the \
and % characters. These characters are modifier's, and for the present the \ followed by the n character represents
a newline character.

Example:

AVC Engg college , Dept of cse Page 53

#include <stdio.h>

main()
{

printf("Programming in C is easy.\n");
printf("And so is Pascal.\n");

}
@ Programming in C is easy.

And so is Pascal.

FORMATTERS for printf are,

Cursor Control Formatters
\n newline \t tab

\r carriage return

\f form feed
\v vertical tab

Scanf ():

Scanf () is a function in C which allows the programmer to accept input from a keyboard.

Example:

#include <stdio.h>

main() /* program which introduces keyboard input */
{

int number;

printf("Type in a number \n");
scanf("%d", &number);
printf("The number you typed was %d\n", number);

}

FORMATTERS FOR scanf()

The following characters, after the % character, in a scanf argument, have the following effect.

d read a decimal integer
o read an octal value
x read a hexadecimal value
h read a short integer
l read a long integer
f read a float value
e read a double value
c read a single character

AVC Engg college , Dept of cse Page 54

s read a sequence of characters
[...] Read a character string. The characters inside the brackets

ACCEPTING SINGLE CHARACTERS FROM THE KEYBOARD

Getchar, Putchar

getchar() gets a single character from the keyboard, and putchar() writes a single character from the
keyboard.

Example:

The following program illustrates this,

#include <stdio.h>

main()
{

int i; int
ch;

for(i = 1; i<= 5; ++i) {
ch = getchar();
putchar(ch);

}
}

The program reads five characters (one for each iteration of the for loop) from the keyboard. Note that getchar()
gets a single character from the keyboard, and putchar() writes a single character (in this case, ch) to the console
screen.

DECISION MAKING

IF STATEMENTS

The if statements allows branching (decision making) depending upon the value or state of variables. This allows
statements to be executed or skipped, depending upon decisions. The basic format is,

if(expression) program
statement;

Example:

if(students < 65)

++student_count;

AVC Engg college , Dept of cse Page 55

In the above example, the variable student_count is incremented by one only if the value of the integer variable
students is less than 65.

The following program uses an if statement to validate the users input to be in the range 1-10.

Example:

#include <stdio.h>

main()
{

while(valid == 0) {
printf("Enter a number between 1 and 10 -->"); scanf("%d",
&number);
/* assume number is valid */ valid = 1;
if(number < 1) {

printf("Number is below 1. Please re-enter\n"); valid = 0;
}
if(number > 10) {

printf("Number is above 10. Please re-enter\n"); valid = 0;
}

}
printf("The number is %d\n", number);

}

IF ELSE

The general format for these are,

if(condition 1) statement1;
else if(condition 2) statement2;
else if(condition 3) statement3;
else statement4;

The else clause allows action to be taken where the condition evaluates as false (zero).

The following program uses an if else statement to validate the users input to be in the range 1-10.

Example:

#include <stdio.h>

main()
{

int number; int valid = 0;

while(valid == 0) {
printf("Enter a number between 1 and 10 -->"); scanf("%d",

AVC Engg college , Dept of cse Page 56

&number);
if(number < 1) {

printf("Number is below 1. Please re-enter\n"); valid = 0;
}

else if(number > 10) {
printf("Number is above 10. Please re-enter\n");
valid = 0;

}
else

valid = 1;
}
printf("The number is %d\n", number);

}

This program is slightly different from the previous example in that an else clause is used to set the variable valid
to 1. In this program, the logic should be easier to follow.

NESTED IF ELSE

/* Illustates nested if else and multiple arguments to the scanf function. */

Example:

#include <stdio.h>

main()
{

int invalid_operator = 0;
char operator;
float number1, number2, result;

printf("Enter two numbers and an operator in the format\n");
printf(" number1 operator number2\n");
scanf("%f %c %f", &number1, &operator, &number2);

if(operator == '*')
result = number1 * number2;

else if(operator == '/')
result = number1 / number2;

else if(operator == '+')
result = number1 + number2;

else if(operator == '-')
result = number1 - number2;

else
invalid_operator = 1;

if(invalid_operator != 1)
printf("%f %c %f is %f\n", number1, operator, number2, result);

AVC Engg college , Dept of cse Page 57

else
printf("Invalid operator.\n");

BRANCHING AND LOOPING

ITERATION, FOR LOOPS

The basic format of the for statement is,

for(start condition; continue condition; re-evaulation
) program statement;

Example:

/* sample program using a for statement
*/ #include <stdio.h>

main() /* Program introduces the for statement, counts to ten */
{

int count;

for(count = 1; count <= 10; count = count + 1
) printf("%d ", count);

printf("\n");
}

The program declares an integer variable count. The first part of the for statement

for(count = 1;
initialises the value of count to 1. The for loop continues whilst the condition

count <= 10;
evaluates as TRUE. As the variable count has just been initialised to 1, this condition is TRUE and so the
program statement

printf("%d ", count);
is executed, which prints the value of count to the screen, followed by a space character.

Next, the remaining statement of the for is executed

count = count + 1);
which adds one to the current value of count. Control now passes back to the conditional test,

count <= 10;
which evaluates as true, so the program statement

AVC Engg college , Dept of cse Page 58

printf("%d ", count);
is executed. Count is incremented again, the condition re-evaluated etc, until count reaches a value of 11.

When this occurs, the conditional test

count <= 10;
evaluates as FALSE, and the for loop terminates, and program control passes to the statement

printf("\n");
which prints a newline, and then the program terminates, as there are no more statements left to execute.

THE WHILE STATEMENT

The while provides a mechanism for repeating C statements whilst a condition is true. Its format is,

while(condition)

program statement;

Somewhere within the body of the while loop a statement must alter the value of the condition to allow the loop
to finish.

Example:

/* Sample program including while */
#include <stdio.h>

main()
{

int loop = 0;

while(loop <= 10) {
printf("%d\n", loop);
++loop;

}
}

The above program uses a while loop to repeat the statements

printf("%d\n", loop);
++loop;

whilst the value of the variable loop is less than or equal to 10.

Note how the variable upon which the while is dependant is initialised prior to the while statement (in this case
the previous line), and also that the value of the variable is altered within the loop, so that eventually the
conditional test will succeed and the while loop will terminate.

This program is functionally equivalent to the earlier for program which counted to ten.

AVC Engg college , Dept of cse Page 59

THE DO WHILE STATEMENT

The do { } while statement allows a loop to continue whilst a condition evaluates as TRUE (non-zero). The loop is
executed as least once.

Example:

/* Demonstration of DO...WHILE */
#include <stdio.h>

main()
{

int value, r_digit;

printf("Enter the number to be reversed.\n");
scanf("%d", &value);
do {

r_digit = value % 10;
printf("%d", r_digit);
value = value / 10;

} while(value != 0);
printf("\n");

}
The above program reverses a number that is entered by the user. It does this by using the modulus % operator to
extract the right most digit into the variable r_digit. The original number is then divided by 10, and the operation
repeated whilst the number is not equal to 0.

SWITCH CASE:

The switch case statement is a better way of writing a program when a series of if elses occurs. The general format
for this is,

switch (expression) {
case value1:

program statement;
program statement;
......
break;

case valuen:
program statement;
.......
break;

default:
.......
.......
break;

}

The keyword break must be included at the end of each case statement. The default clause is optional, and is
executed if the cases are not met. The right brace at the end signifies the end of the case selections.

Example:

AVC Engg college , Dept of cse Page 60

#include <stdio.h>

main()
{

int menu, numb1, numb2, total;

printf("enter in two numbers -->");
scanf("%d %d", &numb1, &numb2);
printf("enter in choice\n");
printf("1=addition\n");
printf("2=subtraction\n");
scanf("%d", &menu);
switch(menu) {

case 1: total = numb1 + numb2; break;
case 2: total = numb1 - numb2; break;
default: printf("Invalid option selected\n");

}
if(menu == 1)

printf("%d plus %d is %d\n", numb1, numb2, total);
else if(menu == 2)

printf("%d minus %d is %d\n", numb1, numb2, total);
}

The above program uses a switch statement to validate and select upon the users input choice, simulating a simple
menu of choices.

AVC Engg college , Dept of cse Page 61

UNIT III ARRAYS AND STRINGS 9

Arrays – Initialization – Declaration – One dimensional and Two dimensional arrays. String- String

operations – String Arrays. Simple programs- sorting- searching – matrix operations.

INTRODUCTION

An array is a group of related data items that share a common name. For instance, we
can define array name salary to represent a set of salary of a group of employees. A particular
value is indicated by writing a number called index number or subscript in brackets after the
array name.

Eg: salary[10]

ONE DIMENSIONAL ARRAY

An array with a single subscript is known as one dimensional array.
Eg: 1) int number[5];

The values to array elements can be assigned as follows.

Eg: 1) number[0] = 35;
number[1] = 40;
number[2] = 20;

Declaration of Arrays

The general form of array declaration is

type variable-name[size];

The type specifies the type of element that will be contained in the array, such as int,
float, or char and the size indicates the maximum number of elements that can be stored inside
the array.

Eg: 1) float height[50];
2) int group[10];
3)char name[10];

Initialization of Arrays

The general form of initialization of arrays is:

static type array-name[size] = {list of values};

AVC Engg college , Dept of cse Page 62

Eg:1) static int number[3] = {0,0};

If the number of values in the list is less than the number of elements, then only that
many elements will be initialized. The remaining elements will be set to zero

automatically. Initialization of arrays in C suffers two drawbacks

 There is no convenient way to initialize only selected elements.

 There is no shortcut method for initializing a large number of array elements
like the one available in FORTRAN.

We can use the word ‘static’ before type declaration. This declares the variable as a
static variable.

Eg : 1) static int counter[] = {1,1,1};
2) ………

………
for(i =0; i < 100; i = i+1)
{
if i < 50

sum[i] = 0.0;
else

sum[i] = 1.0;
}
……….
……….

Program

/*Program showing one-dimensional array*/
main()
{
int i;
float x[10],value,total; printf(“Enter
10 real numbers:\n”); for(i =0; i < 10;
i++)
{
scanf(“%f”,&value);
x[i] = value;
}
total = 0.0;

for(i = 0; i < 10; i++)
total = total + x[i] * x[i];
printf(“\n”);
for(i = 0; i < 10; i++) printf(“x[%2d]
= %5.2f \n”,i+1,x[i]); printf(“\nTotal
= %.2f\n”,total);

AVC Engg college , Dept of cse Page 63

}

OUTPUT
Enter 10 real numbers:
1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10

x[1] = 1.10 x[2]
= 2.20 x[3] =
3.30 x[4] = 4.40

x[5] = 5.50 x[6]
= 6.60 x[7] =
7.70 x[8] = 8.80
x[9] = 9.90
x[10] = 10.10
Total = 446.86

TWO-DIMENSIONAL ARRAYS

Two-dimensional arrays are declared as follows

type array- name[row_size][column_size];

Eg: product[i][j] = row * column;

Program
/*Program to print multiplication table*/
#define ROWS 5
#define COLUMNS 5
main()
{
int row, column, product[ROWS][COLUMNS];
int i, j;
printf(“Multiplication table\n\n:”) ;
printf(“ “);
for(j = 1; j <= COLUMNS; j++)
printf(“%4d”,j);
printf(“\n”);
printf(“ \n”);
for(i = 0; i < ROWS; i++)
{
row = i + 1;
printf(“%2d|”, row);
for(j =1; j <= COLUMNS; j++)
{
column = j;
product[i][j] = row * column;

AVC Engg college , Dept of cse Page 64

printf(“%4d”, product[i][j]);
}
printf(“\n”);
}
}

OUTPUT
Multiplication Table
1 2 3 4 5

Check Your Progress

Ex 1) Give examples for one dimensional array.

--
--

Ex 2) Give examples for two dimensional array.

MULTIDIMENSIONAL ARRAY

C allows arrays of three or more dimensions. The exact limit is determined by the
compiler. The general form of a multidimensional array is

type array_name[s1][s2][s3]…s[m];

Eg: 1. int survey[3][5][12];
2. float table[5][4][5][3];

HANDLING OF CHARACTER STRINGS

INTRODUCTION

A string is a array of characters. Any group of characters(except the double quote sign)
defined between double quotation marks is a constant string.
Eg: 1) “Man is obviously made to think”

AVC Engg college , Dept of cse Page 65

If we want to include a double quote in a string, then we may use it with the back slash.
Eg: printf(“\”well done!\””);

will output
“well done!”

The operations that are performed on character strings are

 Reading and writing strings.
 Combining strings together.
 Copying one string to another.
 Comparing strings for equality.
 Extracting a portion of a string.

DECLARING AND INITIALIZING STRING VARIABLES

A string variable is any valid C variable name and is always declared as an array.
The general form of declaration of a string variable is

char string_name[size];

Eg: char city[10];

char name[30];

When the compiler assigns a character string to a character array, it automatically
supplies a null character (‘\0’) at the end of the string. Therefore, the size should be equal to
the maximum number of characters in the string plus one. C permits a character array to be
initialized in either of the following two forms

static char city[9] = “NEW YORK”;

Reading Words

The familiar input function scanf can be used with %s format specification to read in
a string of characters.

Eg: char address[15];
scanf(“%s”,address);

Program
/*Reading a series of words using scanf
function*/ main()
{
char word1[40],word2[40],word3[40],word4[40];
printf(“Enter text:\n”);
scanf(“%s %s”,word1,
word2); scanf(“%s”, word3);
scanf(“%s”,word4);
printf(“\n”);
printf(“word1 = %s \n word2 = %s \n”,word1, word2);
printf(“word3 = %s \n word4 = %s \n”,word3, word4);
}

AVC Engg college , Dept of cse Page 66

OUTPUT
Enter text:
Oxford Road, London M17ED
Word1 = Oxford
Word2 = Road
Word3 = London
Word4 = M17ED
Note: Scanf function terminates its input on the first white space it finds.

Reading a Line of Text

It is not possible to use scanf function to read a line containing more than one word.
This is because the scanf terminates reading as soon as a space is encountered in the input. We
can use the getchar function repeatedly to read single character from the terminal, using the
function getchar. Thus an entire line of text can be read and stored in an array.

Program
/*Program to read a line of text from terminal*/
#include<stdio.h>
main()
{
char line[81],character;
int c;
c = 0;
printf(“Enter text. Press<Return>at end
\n”); do
{
character = getchar();

line[c] = character; c++;

}
while(character !=
‘\n’); c = c-1;
line[c] = ‘\0’;
printf(“\n %s \n”,line);
}

OUTPUT
Enter text. Press<Return>at end
Programming in C is interesting
Programming in C is interesting

WRITING STRINGS TO SCREEN

We have used extensively the printf function with %s format to print strings to the
screen. The format %s can be used to display an array of characters that is terminated by the
null character.

For eg, the statement
printf(“%s”, name);

can be used to display the entire contents of the array name.

AVC Engg college , Dept of cse Page 67

ARITHMETIC OPERATIONS ON CHARACTERS

C allows us to manipulate characters the same way we do with numbers. Whenever a
character constant or character variable is used in an expression, it is automatically converted
into integer value by the system.

For eg, if the machine uses the ASCII representation, then,
x = ‘a’;
printf(“%d \n”,x);
will display the number 97 on the screen.

The C library supports a function that converts a string of digits into their
integer values. The function takes the form

x = atoi(string)

PUTTING STRINGS TOGETHER

Just as we cannot assign one string to another directly, we cannot join two strings
together by the simple arithmetic addition. That is, the statements such as

string3 = string1 + string2;
string2 = string1 + “hello”;

are not valid. The characters from string1 and string2 should be copied into string3 one after
the other. The process of combining two strings together is called concatenation.

COMPARISON OF TWO STRINGS

C does not permit the comparison of two strings directly. That is, the statements such as

if(name1 == name2)
if(name == “ABC”);

are not permitted. It is therefore necessary to compare the two strings to be tested, character by
character. The comparison is done until there is a mismatch or one of the strings terminate into
a null character, whichever occurs first.

STRING - HANDLING FUNCTIONS

C library supports a large number of string- handling functions that can be used to carry
out many of the string manipulation activities. Following are the most commonly used string-
handling functions.

Function Action
strcat() Concatenates two strings
strcmp() Compares two strings
strcpy() Copies one string over another
strlen() Finds the length of the string

AVC Engg college , Dept of cse Page 68

strcat() Function

The strcat function joins two strings together. It takes the following form

strcat(string1,string2);

Eg: strcat(part1, “GOOD”);

strcat(strcat(string1,string2),string3);

Here three strings are concatenated and the result is stored in string1.

strcmp() Function

It is used to compare two strings identified by the arguments and has a value 0 if

they are equal.It takes the form:

strcmp(string1,string2);

Eg: 1) strcmp(name1,name2);
2) strcmp(name1,”john”;
3) strcmp(“ram”, “rom”);

strcpy() Function

This function works almost like a string assignment operator. It takes the form

strcpy(string1,string2);

This assigns the content of string2 to string1.

Eg: 1) strcpy(city, “DELHI”);
2) strcpy(city1,city2);

strlen() Function

This function counts and returns the number of characters in a string.

n = strlen(string);

Program
/*Illustration of string- handling functions*/
#include<string.h>
main()
{
char s1[20],s2[20],s3[20];
int x, l1, l2, l3;

AVC Engg college , Dept of cse Page 69

printf(“Enter two string constants \n”);
printf(“?”);
scanf(“%s %s”, s1, s2);
x = strcmp(s1, s2);
if(x != 0)
printf(“Strings are not equal \n”);
strcat(s1, s2);

else
printf(“Strings are equal \n”);
strcpy(s3,s1);
l1 = strlen(s1);
l2 = strlen(s2);
l3 = strlen(s3);
printf(“\ns1 = %s \t length = %d characters \n”,s1, l1);
printf(“\ns2= %s \t length = %d characters \n”,s2, l2);
printf(“\ns3 = %s \t length = %d characters \n”,s3, l3);
}

OUTPUT
Enter two string constants

? New York
Strings are not equal
s1 = New York length = 7 characters
s2 = York length = 4 characters
s3 = New York length = 7 characters

Enter two string constants
? London London
Strings are equal
s1 = London length = 6 characters
s2 = London length = 6 characters
s3 = London length = 6 characters

AVC Engg college , Dept of cse Page 70

UNIT IV FUNCTIONS AND POINTERS 9

Function – definition of function – Declaration of function – Pass by value – Pass by reference –

Recursion – Pointers - Definition – Initialization – Pointers arithmetic – Pointers and arrays-

Example Problems.

FUNCTIONS

A function in C can perform a particular task, and supports the concept of modular programming design
techniques.

We have already been exposed to functions. The main body of a C program, identified by the keyword main, and
enclosed by the left and right braces is a function. It is called by the operating system when the program is loaded,
and when terminated, returns to the operating system.

Functions have a basic structure. Their format is

return_data_type function_name (arguments, arguments)
data_type_declarations_of_arguments;
{

function_body
}

It is worth noting that a return_data_type is assumed to be type int unless otherwise specified, thus the programs
we have seen so far imply that main() returns an integer to the operating system.

return_data_type function_name (data_type variable_name, data_type variable_name, ..)
{

function_body
}

simple function is,

void print_message(void)
{

printf("This is a module called print_message.\n");
}

Example:

Now lets incorporate this function into a program.

/* Program illustrating a simple function call */
#include <stdio.h>

AVC Engg college , Dept of cse Page 71

void print_message(void); /* ANSI C function prototype */

void print_message(void) /* the function code */
{

printf("This is a module called print_message.\n");
}

main()
{

print_message();
}

To call a function, it is only necessary to write its name. The code associated with the function name is executed at
that point in the program. When the function terminates, execution begins with the statement which follows the
function name.

In the above program, execution begins at main(). The only statement inside the main body of the program is a call

to the code of function print_message(). This code is executed, and when finished returns back to main().

As there is no further statements inside the main body, the program terminates by returning to the operating
system.

RETURNING FUNCTION RESULTS

This is done by the use of the keyword return, followed by a data variable or constant value, the data type of
which must match that of the declared return_data_type for the function.

float add_numbers(float n1, float n2)
{

return n1 + n2; /* legal */
return 6; /* illegal, not the same data type */
return 6.0; /* legal */

}

It is possible for a function to have multiple return statements.

int validate_input(char command)

switch(command) { case '+' :

case '-' : return 1;
case '*' :
case '/' : return 2;
default : return 0;

}
}

Example:

/* Simple multiply program using argument passing */
#include <stdio.h>

int calc_result(int, int); /* ANSI function prototype */

AVC Engg college , Dept of cse Page 72

int calc_result(int numb1, int numb2)
{

auto int result;
result = numb1 * numb2;
return result;

}

main()
{

int digit1 = 10, digit2 = 30, answer = 0;
answer = calc_result(digit1, digit2);
printf("%d multiplied by %d is %d\n", digit1, digit2, answer);

}

RECURSION

This is where a function repeatedly calls itself to perform calculations. Typical applications are games and Sorting
trees and lists.

Consider the calculation of 6! (6 factorial)

ie 6! = 6 * 5 * 4 * 3 * 2 * 1
6! = 6 * 5!
6! = 6 * (6 - 1)!
n! = n * (n - 1)!

Example:

/* example for demonstrating recursion */
#include <stdio.h>

long int factorial(long int); /* function prototype */

long int factorial(long int n)
{

long int result;

if(n == 0L)

result = 1L;
else

result = n * factorial(n - 1L); return
(result);

}

main()
{

int j;

for(j = 0; j < 11; ++j)
printf("%2d! = %ld\n", factorial((long) j));

}

CALL BY VALUE:

When the value is passed directly to the function it is called call by value. In call by value only a copy of the

AVC Engg college , Dept of cse Page 73

variable is only passed so any changes made to the variable does not reflects in the calling function.

Example:

#include<stdio.h>
#include<conio.h>
swap(int,int); void
main()
{
int x,y;
printf("Enter two nos");
scanf("%d %d",&x,&y);
printf("\nBefore swapping : x=%d y=%d",x,y);
swap(x,y);
getch();
}
swap(int a,int b)
{
int t; t=a;
a=b; b=t;
printf("\nAfter swapping :x=%d y=%d",a,b);
}
SYSTEM OUTPUT: Enter two
nos 12 34 Before swapping :12
34 After swapping : 34 12

CALL BYREFERENCE

When the address of the value is passed to the function it is called call by reference. In call by reference since the
address of the value is passed any changes made to the value reflects in the calling function.

Example:

#include<stdio.h>
#include<conio.h>
swap(int *, int *);
void main()

{
int x,y;
printf("Enter two nos");
scanf("%d %d",&x,&y);
printf("\nBefore swapping:x=%d y=%d",x,y);
swap(&x,&y);
printf("\nAfter swapping :x=%d y=%d",x,y);
getch();
}
swap(int *a,int *b)
{
int t;
t=*a;
*a=*b;
*b=t;
}

SYSTEM OUTPUT:

AVC Engg college , Dept of cse Page 74

Enter two nos 12 34
Before swapping :12 34
After swapping : 34 12

INTRODUCTION

Pointers are another important feature of C language. Although they may appear a little
confusing for a beginner, they are powerful tool and handy to use once they are mastered.
There are a number of reasons for using pointers.

1. A pointer enables us to access a variable that is defined outside the function.
2. Pointers are more efficient in handling the data tables.
3. Pointers reduce the length and complexity of a program.
4. They increase the execution speed.
5. The use of a pointer array to character strings result in saving of data storage

space in memory.

UNDERSTANDING POINTERS

Whenever we declare a variable, the system allocates, somewhere in the memory, an
appropriate location to hold the value of the variable. Since, every byte has a unique address
number, this location will have its own address number.

Consider the following statement:

int quantity = 179;

This statement instructs the system to find a location for the integer variable quantity
and puts the value 179 in that location. Assume that the system has chosen the address location
5000 for quantity. We may represent this as shown below.

quantity Variable

Value179

5000 Address

Representation of a variable

During execution of the program, the system always associates the name quantity with
the address 5000. To access the value 179 we use either the name quantity or the address 5000.
Since memory addresses are simply numbers, they can be assigned to some variables which
can be stored in memory, like any other variable. Such variables that hold memory
addresses are called pointers. A pointer is, therefore, nothing but a variable that contains
an address which is a location of another variable in memory.

AVC Engg college , Dept of cse Page 75

Since a pointer is a variable, its value is also stored in the memory in another location.
Suppose, we assign the address of quantity to a variable p. The link between the variables p and
quantity can be visualized as shown below. The address of p is 5048.

Variable Value Address

quantity 179 5000

p 5000 5048

Pointer as a variable

Since the value of the variable p is the address of the variable quantity, we may access
the value of quantity by using the value of p and therefore, we say that the variable p ‘points’ to
the variable quantity. Thus, p gets the name ‘pointer’.

CESSING THE ADDRESS OF A VARIABLE

The actual location of a variable in the memory is system dependent and therefore, the
address of a variable is not known to us immediately. However we determine the address of a
variable by using the operand & available in C. The operator immediately preceding the
variable returns the address of the variable associated with it. For example, the statement

p = &quantity;

would assign the address 5000(the location of quantity) to the variable p. The &operator
can be remembered as ‘address of’.

The & operator can be only used with a simple variable or an array element. The
following are illegal use of address operator:

1. &125 (pointing at constants).
2. int x[10];

&x (pointing at array names).

3. &(x+y) (pointing at expressions).

If x is an array ,then expressions such as

&x[0] and &x[i + 3]

are valid and represent the addresses of 0
th

and (i + 3)
th

 elements of x.

The program shown below declares and initializes four variables and then prints out these

AVC Engg college , Dept of cse Page 76

values with their respective storage locations.

Program
/***/ /*
ACCESSING ADDRESSES OF VARIABLES */
/***/
main()
{

char a; int
x; float p,
q;
a = ’A’;
x = 125;
p = 10.25 , q = 18.76;
printf(“%c is stored as addr %u . \n”, a, &a);
printf(“%d is stored as addr %u . \n”,x , &x);
printf(“%f is stored as addr %u . \n”, p, &p);
printf(“%f is stored as addr %u . \n”, q, &q);

}

A is stored at addr 44336
125 is stored at addr 4434
10.250000 is stored at addr 4442
18.760000 is stored at addr 4438.

DECLARING AND INITIALIZING POINTERS

Pointer variables contain addresses that belong to a separate data type, which must be
declared as pointers before we use them. The declaration of the pointer variable takes the
following form:

data type *pt _name;

This tells the compiler three things about the variable pt _name:

1. The asterisk(*) tells that the variable pt _name.

2. pt _name needs a memory location.

3. pt_name points to a variable of type data type.

Example:

AVC Engg college , Dept of cse Page 77

int *p;
float *x;

Once a pointer variable has been declared, it can be made to point to a variable using an
assignment operator such as

p= &quantity;

Before a pointer is initialized it should not be used.

Ensure that the pointer variables always point to the corresponding type of data.

Example:

float a, b;

int x, *p;

p = &a;

b = *p;

will result in erroneous output because we are trying to assign the address of a float variable to
an integer pointer. When we declare a pointer to be of int type, the system assumes that any
address that a pointer will hold will point to an integer variable.

Assigning an absolute address to a pointer variable is prohibited. The following is wrong.

int *ptr;

….

ptr = 5368;

….

….

A pointer variable can be initialized in its declaration itself. For example,

int x, *p = &x;

is perfectly valid. It declares x as an integer variable and p as a pointer variable and then
initializes p to the address of x. The statement

int *p = &x, x; is not valid.

ACCESSING A VARIABLE THROUGH ITS POINTER

To access the value of the variable using the pointer, another unary operator *(asterisk),
usually known as the indirection operator is used. Consider the following statements:

int quantity, *p, n;

quantity = 179;

p= &quantity;

AVC Engg college , Dept of cse Page 78

n= *p;

The statement n=*p contains the indirection operator *. When the operator * is placed
before a pointer variable in an expression (on the right-hand side of the equal sign), the pointer
returns the value of the variable of which the pointer value is the address. In this case, *p
returns the value of the variable quantity, because p is the address of the quantity. The * can be
remembered as ‘value at address’. Thus the value of n would be 179. The two statements

p= &quantity;

n= *p; are equivalent to

n= *&quantity;

which in turn is equivalent to

n= quantity;

The following program illustrates the distinction between pointer value and the value it
points to and the use of indirection operator(*) to access the value pointed to by a pointer.

Check Your Progress

Ex 1) Specify a few reasons to use Pointers.

Ex 2) Pointer variable stores ___________

Program ACCESSING VARIABLES USING POINTERS

main()
{

int x, y ;
int * ptr;
x =10;
ptr = &x;
y = *ptr;
printf (“Value of x is %d \n\n”,x);

printf (“%d is stored at addr %u \n” , x, &x);

printf (“%d is stored at addr %u \n” , *&x, &x);

printf (“%d is stored at addr %u \n” , *ptr, ptr);

printf (“%d is stored at addr %u \n” , y, &*ptr);

printf (“%d is stored at addr %u \n” , ptr, &ptr);

printf (“%d is stored at addr %u \n” , y, &y);

*ptr= 25;

printf(“\n Now x = %d \n”,x);

}

AVC Engg college , Dept of cse Page 79

The statement ptr = &x assigns the address of x to ptr and y = *ptr assigns the value

pointed to by the pointer ptr to y.

Note the use of assignment statement

*ptr=25;

This statement puts the value of 25 at a memory location whose address is the value of
ptr. We know that the value of ptr is the address of x and therefore the old value of x is
replaced by 25. This, in effect, is equivalent to assigning 25 to x. This shows how we can
change the value of a variable indirectly using a pointer and the indirection operator.

POINTER EXPRESSIONS

Like other variables, pointer variables can be used in expressions. For example, if p1 and

p2 are properly declared and initialized pointers , then the following statements are valid.

1) y = *p1* *p2; same as (* p1) * (* p2)

2) sum = sum + *p1;

3) z = 5* - *p2/ *p1; same as (5 * (-(* p2)))/(* p1)

4) *p2 = *p2 + 10;

Note that there is a blank space between / and * in the statement 3 above.

C allows us to add integers to or subtract integers from pointers , as well as to subtract
one pointer from another. p1 + 4, p2 – 2 and p1 – p2 are all allowed. If p1 and p2 are both

pointers to the same array, then p2 – p1 gives the number of elements between p1 and p2. We
may also use short-hand operators with the pointers.

p1++;

--p2;

Sum += *p2;

Pointers can also be compared using the relational operators. Pointers cannot be used in
division or multiplication. Similarly two pointers cannot be added.

A program to illustrate the use of pointers in arithmetic operations.

Program POINTER EXPRESSIONS

AVC Engg college , Dept of cse Page 80

main ()
{

int a, b, *p1,* p2, x, y, z;
a = 12;
b = 4;
p1 = &a;
p2 = &b;
x = *p1 * *p2 – 6;
y = 4* - *p2 / *p1 + 10;

printf(“Address of a = %u\n”, p1);

printf(“Address of b = %u\n”, p2);
printf(“\n”);
printf(“a = %d, b = %d\n”, a, b);
printf(“x = %d, y = %d\n”, x, y);
*p2 = *p2 + 3;
*p1 = *p2 - 5;
z = *p1 * *p2 – 6;
printf(“\n a = %d, b = %d,” , a ,
b); printf(“\n z = %d\n” , z);

}

POINTER INCREMENTS AND SCALE FACTOR

We have seen that the pointers can be incremented

like p1 = p2 + 2;

p1 = p1 + 1;

and so on .

Remember, however, an expression

like p1++;

will cause the pointer p1 to point to the next value of its type.

That is, when we increment a pointer, its value is increased by the length of the data
type that it points to. This length is called the scale factor.

The number of bytes used to store various data types depends on the system and can be
found by making use of size of operator. For example, if x is a variable, then size of(x) returns

the number of bytes needed for the variable.

AVC Engg college , Dept of cse Page 81

POINTERS AND ARRAYS

When an array is declared, the compiler allocates a base address and sufficient amount
of storage to contain all the elements of array in contiguous memory location. The base address
is the location of the first element (index 0) of the array. The compiler also defines the array
name as a constant pointer to the first element. Suppose we declare an array x as follows:

static int x[5] = {1,2,3,4,5};

Suppose the base address of x is 1000and assuming that each integer requires
two bytes, the five elements will be stored as follows:

Elements x[0] x[1] x[2] x[3] x[4]

1 2 3 4 5
Value

Address 1000 1002 1004 1006 1008

The name x is defined as a constant pointer pointing to the first element x[0] and
therefore value of x is 1000, the location where x[0] is stored . That is ,

x = &x[0] =1000

Accessing array elements using the pointer

Pointers can be used to manipulate two-dimensional array as well. An element in a
two-dimensional array can be represented by the pointer expression as follows:

((a+i)+j) or *(*(p+i)+j)

The base address of the array a is &a[0][0] and starting at this address, the compiler
allocates contiguous space for all the elements, row-wise. That is, the first element of the
second row is placed immediately after the last element of the first row, and so on.

AVC Engg college , Dept of cse Page 82

A program using Pointers to compute the sum of all elements stored in an array is
presented below:

POINTERS IN ONE-DIMENSONAL ARRAY
main ()
{

int *p, sum , i
static int x[5] = {5,9,6,3,7};
i = 0;
p = x;
sum = 0;
printf(“Element Value Address \n\n”);
while(i < 5)
{

printf(“ x[%d} %d %u\n”, i, *p, p);
sum = sum + *p;
i++, p++;

}
printf(“\n Sum = %d \n”, sum);
printf(“\n &x[0] = %u \n”, &x[0]);
printf(“\n p = %u \n”, p);
}

Output

Element Value Address
X[0] 5 166
X[1] 9 168
X[2] 6 170
X[3] 3 172
X[4] 7 174
Sum = 55
&x[0] = 166
p = 176

POINTERS AND CHARACTER STRINGS

We know that a string is an array of characters, terminated with a null character. Like in
one-dimensional arrays, we can use a pointer to access the individual characters in a string.
This is illustrated in the program given below.

/* Pointers and character Strings */

main()

{

char * name;

int length;

char * cptr = name;

AVC Engg college , Dept of cse Page 83

name = “DELHI”;

while (*cptr != ‘\0’)

{

printf(“%c is stored at address %u \n”, *cptr,cptr);

cptr++;

}

length = cptr-name;

printf(“\n length = %d \n”, length);

}

String handling by pointers

One important use of pointers in handling of a table of strings. Consider the following
array of strings:

char name[3][25];

This says that name is a table containing three names, each with a maximum length of
25 characters (including null character).

Total storage requirements for the name table are 75 bytes.

Instead of making each row a fixed number of characters , we can make it a pointer to a
string of varying length.

For example,

static char *name[3] = { “New zealand”,

“Australia”,

“India”

};

declares name to be an array of three pointers to characters, each pointer pointing to a
particular name as shown below:

name[0] New Zealand

name[1] Australia

name[2] India

AVC Engg college , Dept of cse Page 84

POINTERS AS FUNCTION ARGUMENTS

Program POINTERS AS FUNCTION PARAMETERS
main ()
{

int x , y;
x = 100;
y = 200;
printf(“Before exchange : x = %d y = %d \n\n ”, x , y);
exchange(&x, &y);
printf(“After exchange : x = %d y = %d \n\n “ , x , y);

}
exchange(a, b)
int *a, *b;
{

int t;
t = * a; /*Assign the value at address a to t*/
* a = * b ; /*Put the value at b into a*/
* b = t; /*Put t into b*/

}

In the above example, we can pass the address of the variable a as an argument to a
function in the normal fashion. The parameters receiving the addresses should be pointers. The
process of calling a function using pointers to pass the addresses of variable is known as call by
reference. The function which is called by ‘Reference’ can change the value of the variable
used in the call.

Passing of pointers as function parameters

1. The function parameters are declared as pointers.
2. The dereference pointers are used in the function body.
3. When the function is called, the addresses are passed as actual arguments.

Pointers parameters are commonly employed in string functions.

Pointers to functions

A function, like a variable has an address location in the memory. It is therefore,
possible to declare a pointer to a function, which can then be used as an argument in another
function. A pointer to a function is declared as follows:

type (*fptr)();

This tells the compiler that fptr is a pointer to a function which returns type value.

A program to illustrate a function pointer as a function argument.

AVC Engg college , Dept of cse Page 85

Program
POINTERS TO FUNCTIONS
#include <math.h>
#define PI 3.141592
main ()
{

double y(), cos(), table();
printf(“Tableof y(x) = 2*x*x-
x+1\n\n”); table(y, 0.0 , 2.0, 0.5);

printf(“\n Table of cos(x) \n\n”);
table(cos, 0.0, PI , 0.5);

}
double table(f, min, max, step)
double (*f) (), min, max , step;
{

double a, value;
for(a = min; a < = max; a + = step)
{

value = (*f)(a);
printf(“%5.2f %10.4f\n”, a, value);

}
}
double y(x)
double x;
{

return (2*x*x-x+1);
}

POITNTERS AND STRUCTERS

The name of an array stands for the address of its zero
th

element. Consider the following declaration:

struct inventory

{

char name[30];

int number;

float price;

} product[2], *ptr;

This statement declares product as an array of two elements, each of type of struct
inventory and ptr as a pointer to data objects of the type struct inventory.

AVC Engg college , Dept of cse Page 86

The assignment

ptr = product;

would assign the address of the zero
th

element of product to ptr. Its members can be accessed
using the following notation .

ptr name

ptr number

ptr price

Initially the pointer ptr will point to product[0], when the pointer ptr is incremented by one it
will point to next record, that is product[1].

We can also use the notation

(*ptr).number

to access the member number.

AVC Engg college , Dept of cse Page 87

A program to illustrate the use of structure pointers.

Program POINTERS TO STRUCTURE VARIABLES
struct invent
{

char *name[20];
int number; float
price;

};
main()
{

struct invent product[3],
*ptr; printf(“INPUT\n\n”);
for(ptr = product; ptr < product + 3; ptr + +)

scanf(“%s %d %f”, ptr name, &ptr number , & ptr
price);
printf(“\Noutput\n\n”);
ptr = product; while(ptr
< product +3)

{
printf(“%-20s %5d %10.2f\n” ,

ptr name,
ptr number ,
ptr price); ptr++;

}
}

While using structure pointers we should take care of the precedence of operators.

For example, given the
definition struct

{

int count;

float *p;

} *ptr;

Then the statement

++ptr count;

increments count, not ptr.

However ,

(++ptr) count;

increments ptr first and then links count.

AVC Engg college , Dept of cse Page 88

UNIT V STRUCTURES AND UNIONS 9

Introduction – need for structure data type – structure definition – Structure declaration – Structure

within a structure - Union - Programs using structures and Unions – Storage classes, Pre-processor

directives.

11.2 STRUCTURE DEFINITION

Unlike arrays, structure must be defined first for their format that may be used later to
declare structure variables. Let us use an example to illustrate the process of structure
definition and the creation of structure variables. Consider a book database consisting of book
name, author, number of pages, and price. We can define a structure to hold this information
as follows:

struct book _bank
{

char title[20];
char author[15];
int pages;
float price;

};

The keyword struct declares a structure to hold the details of four data fields, namely
title, author, pages, and price. These fields are called structure elements or members. Each
member may belong to different type of data. book _ bank is the name of the structure and is
called the structure tag. The tag name may be used subsequently to declare variables that have
the tag’s structure.

The general format of a structure definition is as follows:

struct tag _ name
{

data _ type member1;
data _ type member2;

--------- -----
--------- -----

};

In defining a structure, we may note the following syntax:

1. The template is terminated with a semicolon.

2. While the entire definition is considered as a statement, each member is
declared independently for its name and type in a separate statement inside
the template.

3. The tag name such as book _ bank can be used to declare structure variables of
its type, later in the program.

AVC Engg college , Dept of cse Page 89

ARRAY VS STRUCTURE

1. An array is a collection of related data elements of same type. Structure
can have elements of different types.

2. An array is derived data type whereas structure is a programmer-defined one.

3. Any array behaves like a built- in data type. All we have to do is to declare an
array variable and use it. But in the case of a structure, first we have to design
and declare a data structure before the variables of that type are declared and
used.

STRUCTURES WITHIN STRUCTURES

Structures within structures means nesting of structures. Nesting of structures is
permitted in C. Let us consider the following structure defined to store information about the
salary of employees.

struct salary
{

char name[20];
char department[10];
int basic _ pay;
int dearness_ allowance;
int house _ rent _ allowance;
int city_ allowance;

}
employee;

This structure defines name, department , basic pay and three kinds of allowances. We
can group all items related to allowance together and declare them under a substructure as
shown below:
struct salary
{
char name[20];
char department[10];
struct
{
int dearness;
int house_rent;
int city;
}
allowance;
}
employee;

An inner structure can have more than one variable. The following form of declaration is
legal:
struct salary
{
……
struct

AVC Engg college , Dept of cse Page 90

{
int dearness;
…….
}
allowance,
arrears;
}
employee[100];

It is also possible to nest more than one type of structures.

AVC Engg college , Dept of cse Page 91

struct personal_record
{
struct name_part name;
struct addr_part address;
struct date date _ of _
birth ……..
……..
};
struct personal_record person 1;
The first member of this structure is name which is of the type struct name_part. Similarly,
other members have their structure types.

12.3 STRUCTURES AND FUNCTIONS

C supports the passing of structure values as arguments to functions. There are three
methods by which the values of a structure can be transferred from one function to another.

The first method is to pass each member of the structure as an actual argument of the
function call.

The second method involves passing of a copy of the entire structure to the called
function.

The third approach employs a concept called pointers to pass the structure as an
argument.

The general format of sending a copy of a structure to the called function is:

function name(structure variable name)

The called function takes the following form:

data_type function name(st_name)
struct_ type st_name;
{

……….
………..
return (expression);

}

The following points are important to note:

1. The called function must be declared for its type, appropriate to the data type it is
expected to return. For example, if it is returning a copy of the entire structure, then it
must be declared as struct with an appropriate tag name.

2. The structure variable used as the actual argument and the corresponding formal
argument in the called function must be of the same struct type.

3. The return statement is necessary only when the function is returning some data. The
expression may be any simple variable or structure variable or an expression using
simple variables.

4. When a function returns a structure, it must be assigned to a structure of identical type
in the calling function.

5. The called function must be declared in the calling function for its type, if it is placed
after the calling function.

AVC Engg college , Dept of cse Page 92

Check Your Progress

Ex 1) Can we nest the structures?

2) Can we use arrays within structure?

12.4 UNIONS

Like structures, a union can be declared using the keyword union as follows:
union item
{

int m;
float x;
char c;

} code;
This declares a variable code of type union item.

The compiler allocates a piece of storage that is large enough to hold the largest
variable type in the union.

To access a union member, we can use the same syntax that we use for structure
members. That is,

code.m
code.x
code.c

are all valid member variables. During accessing, we should make sure that we are accessing
the member whose value is currently stored. For example, the statement such as

code.m = 379;
code.x=7859.36;
printf(“%d”, code.m);

would produce erroneous output.

In effect, a union creates a storage location that can be used by any one of its members
at a time. When a different member is assigned a new value, the new value supercedes the
previous member’s value.

12.5 SIZE OF STRUCTURES

We normally use structures, unions and arrays to create variables of large sizes. The
actual size of these variables in terms of bytes may change from machine to machine. We
may use the unary operator sizeof to tell us the size of a structure. The expression

sizeof(struct x)

will evaluate the number of bytes required to hold all the members of the structure x. If y is a
simple structure variable of type struct x, then the expression

sizeof(y)

would also give the same answer. However, if y is an array variable of type struct x, then

sizeof(y)

AVC Engg college , Dept of cse Page 93

would give the total number of bytes the array requires.

This kind of information would be useful to determine the number of records in a
database. For example, the expression

sizeof(y) / sizeof(x)

would give the number of elements in the array y.

12.6 BIT FIELDS

C permits us to use small bit fields to hold data items and thereby to pack several data
items in a word of memory. Bit fields allow direct manipulation of string of a string of
preselected bits, as if it is represented an integral quantity.

A bit field is a set of adjacent bits whose size can vary from 1 to 16 bits in length. A
word can be divided into a number of bit fields. The name and size of bit fields are defined
using a structure.

The general form of bit filed definition is

struct tag-name
{

data-type name1 : bit-length;
data-type name2 : bit-length;
data-type name3 : bit-length;

data-type nameN : bit- length;

}

The data type is either int or unsigned int or signed int and the bit- length is the number of

bits used for the specific name. The bit- length is decided by the range of value to be stored.

The largest value that can be stored is 2
n-1

, where n is bit-length. The internal
representation of bit- field is machine dependent. It depends on the size of int and the
ordering of bits.

Example :

Suppose we want to store and use the personal information of employees in
compressed form. This can be done as follows:

struct personal
{

unsigned sex: 1
unsigned age : 7
unsigned m_status: 1
unsigned children: 3
unsigned : 4

} emp;

AVC Engg college , Dept of cse Page 94

This defines a variable name emp with 4 bit fields. The range of values each filed
could have is as follows:

Bit Filed Bit length Range of values

sex 1 0 or 1
age 7 0 to 127 (2

7
– 1)

m_status 1 0 or 1

children 3 0 to 7 (2
3

– 1)

The following statements are valid :

emp.sex =1 ;

emp.age = 50;

It is important to note that we can not use scanf to read the values in to the bit field.

AVC Engg college , Dept of cse Page 95

11.4 GIVING VALUES TO MEMBERS

We can access and assign values to the members of a structure in a number of ways.
The members themselves are not variables. They should be linked to the structure variables in
order to make them meaningful members. For example, the word title has no meaning,
whereas the phrase ‘title of book’ has a meaning. The link between a member and a variable
is established using the member operator ’.’,which is also known as ‘dot operator’ or ‘period
operator’. For example,

book1.price

is the variable representing the price of the book1 and can be treated like any other ordinary
variable. Here is how we would assign values to the member of book1:

strcpy(book1.title, “COBOL”);
strcpy(book1.author,
“M.K.ROY”); book1.pages = 350;
book1. price =140;

We can also use scanf to give the values through the keyboard.

scanf(“%s\n”, book1.title);

scanf(“%d\n”, &book1.pages);

are valid input statements.

Example :

Define a structure type, struct personal, that would contain person name, date of
joining and salary. Using this structure, write a program to read this information for one
person from the keyboard and print the same on the screen.

Structure definition along with the program is shown below. The scanf and printf
functions illustrate how the member operator ‘.’ is used to link the structure members to the
structure variables. The variable name with a period and the member name is used like an
ordinary variable.

AVC Engg college , Dept of cse Page 96

Program
/***/ /*
DEFINING AND ASSIGNING VALUES TO STRUCTURE MEMBERS */
/***/
struct personal
{

char name[20];
int day;
char month[10];
int year;
float salary;

};
main()
{

struct personal person;
printf(“Input values\n”);
scanf(“%s %d %s %d %f”,

person .name,
&person. day,

person.month,
&person.year,
&person.salary);

printf(“%s %d %s %d %.2f\n”,
person .name,
person. day,
person.month,
person.year,
person.salary);

}

11.5 STRUCTURE INITIALIZATION

Like any other data type, a structure variable can be initialized at compile
time. main()
{
struct
{
int weight;
float height;
}
student ={60, 180.75};
………
………
}

This assigns the value 60 to student. weight and 180.75 to student. height. There is a
one-to-one correspondence between the members and their initializing values.

AVC Engg college , Dept of cse Page 97

A lot of variation is possible in initializing a structure. The following statements
initialize two structure variables. Here, it is essential to use a tag name.
main()
{
struct st _ record
{
int weight;
float
height; };
struct st_record student1 ={60, 180.75};
struct st_record student2 ={53, 170.60};
………
………
}

C language does not permit the initialization of individual structure member within
the template. The initialization must be done only in the declaration of the actual variables.

11.6 COMPARISON OF STRUCTURE VARIABLES

Two variables of the same structure type can be compared the same way as ordinary
variables. If person1 and person2 belong to the same structure, then the following operations
are valid:

Operation Meaning

person1 = person2 Assign person2 to person1.
person1 = =person2 Compare all members of person1 and person2 and

return 1 if they are equal, 0 otherwise.
person1 != person2 Return 1 if all the members are not equal, 0

otherwise.

Note that not all compilers support these operations. For example, Microsoft C
version does not permit any logical operations on structure variables. In such cases,
individual member can be compared using logical operators.

11.7 ARRAYS OF STRUCTURES

We use structure to describe the format of a number of related variables. For example,
in analyzing the marks obtained by a class of students, we may use a template to describe
student name and marks obtained in various subjects and then declare all the students as
structure variables. In such cases, we may declare an array of structure, each elements of the
array representing a structure variable. For example,

struct class student[100];

It defines an array called student, that consists of 100 elements. Each elements is
defined to be of the type struct class. Consider the following declaration:

struct marks
{

int subject1;

AVC Engg college , Dept of cse Page 98

Int ubject2; int subject3;
};
main()
{

static struct marks student[3] =
{ {45, 68, 81}, {75, 53, 69}, {57,36,71}};

This declares the student as an array of three elements students[0],
student[1], and student[2] and initializes their members as follows:

student[0].subject1=45;
student[0].subject2=68;

………….
………….

student[2].subject3=71;

An array of structures is stored inside the memory in the same way as a multi-
dimensional array.

Check Your Progress

Ex 1) Can we compare structure variables ? If so, how?

--
--

Ex 2) Construct a structure for bank details.

Student[0].subject1
45

.subject2
68

.subject3
81

Student[1].subject1
75

.subject2
53

.subject3
69

Student[2].subject1

AVC Engg college , Dept of cse Page 99

57
.subject2

36
.subject3

71

The array student inside memory.

STORAGE CLASSES

AUTOMATIC VARIABLES (LOCAL/INTERNAL)

Automatic variables are declared inside a function in which they are to be
utilized.

They are created when a function is called and destroyed automatically when the
function is exited.

Eg:main()
{
int number;

}
We may also use the keyword auto to declare automatic variables explicitly.

 EXTERNAL VARIABLES

Variables that are both alive and active throughout the entire program
are known as external variables. They are also known as global variables.

Eg:
int
numb
er;
float
length
= 7.5;
main()
{

}
function1()
{

AVC Engg college , Dept of cse Page 100

}
function2()
{

}
The keyword extern can be used for explicit declarations of external variables.

STATIC VARIABLES

As the name suggests, the value of a static variable persists until
the end of the program. A variable can be declared static using the
keyword static.

Eg:1) static int x;
2) static int y;

REGISTER VARIABLES

We can tell the compiler that a variable should be kept in one of the
machine’s registers, instead of keeping in the memory. Since a register access is
much faster than a memory access, keeping the frequently accessed variables in the
register will lead to faster execution of programs. This is done as follows:

register int count;

Check Your Progress

Ex 1) Is the keyword auto is compulsory in declaration?

--
2) What is the other name for external variables?

3) Can we declare all variables as register variables?

ANSI C FUNCTIONS

The general form of ANSI C function is

AVC Engg college , Dept of cse Page 101

data-type function-name(type1 a1,type2 a2,…..typeN aN)
{

-------- (body of the function)

}

Eg: 1) double funct(int a, int b, double c)

Function Declaration

The general form of function declaration is

data-type function-name(type1 a1,type2 a2,…..typeN aN)

Eg:main()
{
float a, b, x;
float mul(float length,float breadth);/*declaration*/

x = mul(a,b);
}

THE PREPROCESSOR

The Preprocessor, as the name implies, is a program that processes the
source code before it passes through the complier. It operates under the control of
preprocessor command lines or directives. Preprocessor directives are placed in the
source program before the main line. Before the source code passes through the
compiler, it is examined by the preprocessor for any preprocessor directives. If
there are any, appropriate actions (as per the directives) are taken and then the
source program is handed over to the compiler.

Preprocessor directives begin with the symbol # in column one and do not
require a semicolon at the end.

Commonly used Preprocessor directives

Directive Function

AVC Engg college , Dept of cse Page 102

#define Defines a macro substitution

#undef Undefines a macro

#include specifies the files to be include

ifdef Tests for a macro definition

#endif specifies the end of #if

#ifndef Tests whether a macro is not defined

#if Tests a compile time condition

#else specifies alternatives when #if fails

Preprocessor directives can be divided into three categories

1) Macro substitution directives
2) File Inclusion directives
3) Compiler control directives

Macro Substitution directive

The general form is

#define identifier string

Examples 1) #define COUNT 100 (simple macro substitution)
2) #define CUBE(x) x*x*x (macro with arguments)
3) # define M 5

#define N M+1 (nesting of macros)

File Inclusion directive

This is achieved by

#include “filename” or #include <filename>

AVC Engg college , Dept of cse Page 103

Examples 1) #include

<stdio.h> 2)

#include

“TEST.C”

Check Your Progress

Ex 1) Give examples for macro substitution directives

Ex 2) Differentiate #include <…> and #include “…”

Compiler control directives

These are the directives meant for controlling the compiler actions. C
preprocessor offers a feature known as conditional compilation, which can be used
to switch off or on a particular line or group of lines in a program. Mostly #ifdef
and #ifndef are used in these directives.

